Surface Chemistry of TiO2 Photocatalysis and LIF Detection of OH Radicals

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

By means of laser induced fluorescence (LIF) method, OH radicals formed and released from the surface of TiO2 photocatalysts were detected. The effect of heat treatments of TiO2 on the OH radical formation shows that the amount of OH radicals is affected by the states of surface hydroxyl groups but not the crystalline phase. The effects of the surface hydroxyl groups were discussed based on the measurements of the trapped holes with low temperature ESR spectroscopy and adsorbed water with proton NMR spectroscopy. Then, the reaction mechanism of OH radical formation on the TiO2 surface was suggested to be the reduction of adsorbed H2O2 which is accumulated on the surface by photo irradiation. Finally, the previously reported reaction mechanism of the acetic-acid decomposition was reconsidered based on the mechanism of OH radical formation.

References

  1. Daimon H, Nosaka Y (2007) Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detecting near-infrared phosphorescence. J Phys Chem C 111:4420–4424CrossRefGoogle Scholar
  2. Hirakawa T, Nosaka Y (2002) Properties of O2−• and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254CrossRefGoogle Scholar
  3. Hirakawa T, Nakaoka Y, Nishino J, Nosaka Y (1999) Primary passages for various TiO2 photocatalysts studied by means of luminol chemiluminescent probe. J Phys Chem B 103:4399–4403CrossRefGoogle Scholar
  4. Kubo W, Tatsuma T (2006) Mechanisms of photocatalytic remote oxidation. J Am Chem Soc 128:16034–16035CrossRefGoogle Scholar
  5. Kumar CP, Gopal NO, Wang TC, Wong MS, Ke SC (2006) EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J Phys Chem B 110:5223–5229CrossRefGoogle Scholar
  6. Murakami Y, Kenji E, Nosaka AY, Nosaka Y (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser induced fluorescence spectroscopy. J Phys Chem B 110:16808–16811CrossRefGoogle Scholar
  7. Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126:1290–1298CrossRefGoogle Scholar
  8. Nakaoka Y, Nosaka Y (1997) ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. J Photochem Photobiol A Chem 110:299–307CrossRefGoogle Scholar
  9. Nosaka Y (2002) Photoelectrochemical reactions at the semiconductor microparticles. In: Kaneko M, Ohkura I (eds) Photocatalysis. Kodansha Springer, Tokyo, pp 69–86Google Scholar
  10. Nosaka AY, Nosaka Y (2005) Characteristics of water adsorbed on TiO2 photocatalytic surfaces as studied by 1H-NMR spectroscopy. Bull Chem Soc Jpn 78:1595–1607CrossRefGoogle Scholar
  11. Nosaka Y, Yamashita Y, Fukuyama H (1997) Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. J Phys Chem B 101:5822–5827CrossRefGoogle Scholar
  12. Nosaka Y, Kishimoto M, Nishino J (1998) Factors governing the initial process of TiO2 photocatalysis studied by means of in-situ electron spin resonance measurements. J Phys Chem B 102:10279–10283CrossRefGoogle Scholar
  13. Nosaka Y, Nakamura M, Hirakawa T (2002) Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Phys Chem Chem Phys 4:1088–1092CrossRefGoogle Scholar
  14. Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka AY (2003) Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys Chem Chem Phys 5:4731–4735CrossRefGoogle Scholar
  15. Nosaka AY, Fujiwara T, Yagi H, Akutsu H, Nosaka Y (2004) Characteristics of water adsorbed on TiO2 photocatalytic systems on temperature increase as studied by solid-state 1H-NMR spectroscopy. J Phys Chem B 108:9121–9125CrossRefGoogle Scholar
  16. Nosaka AY, Nishino J, Fujiwara T, Ikegami T, Yagi H, Akutsu H, Nosaka Y (2006a) Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. J Phys Chem B 110:8380–8385CrossRefGoogle Scholar
  17. Nosaka Y, Natsui H, Sasagawa M, Nosaka AY (2006b) ESR studies on the oxidation mechanism of sterically hindered cyclic amines in TiO2 photocatalytic systems. J Phys Chem B 110:12993–12999CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryNagaoka University of TechnologyNagaokaJapan

Personalised recommendations