TiO2-Based Photocatalysis for Organic Synthesis

  • Vincenzo Augugliaro
  • Tullio Caronna
  • Agatino Di Paola
  • Giuseppe Marcì
  • Mario Pagliaro
  • Giovanni Palmisano
  • Leonardo PalmisanoEmail author
Part of the Nanostructure Science and Technology book series (NST)


A major aim of the contemporary chemistry is to replace old environmentally hazardous processes with new, energy efficient routes allowing to reduce or totally avoid the use and production of harmful chemicals and to maximise the quantity of raw material that ends up in the final product. This chapter gives an account of TiO2-based selective photocatalysis as a green synthetic tool for the production of organics. Some case studies of the most common transformations carried out by means of photocatalytic reactions are illustrated in a midway perspective between photochemistry and organic chemistry.


Benzyl Alcohol Styrene Oxide TiO2 Catalyst Photocatalytic Reduction Styrene Epoxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is dedicated with deep affection to University of Palermo’s Professor Mario Schiavello, who retired in 2006. The financial support from MIUR (Rome) and from the Quality College del Cnr is gratefully acknowledged.


  1. Almquist CB, Biswas P (2001) The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. Appl Catal A Gen 214:259–271CrossRefGoogle Scholar
  2. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. New York, Oxford University PressGoogle Scholar
  3. Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74:207–212CrossRefGoogle Scholar
  4. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26CrossRefGoogle Scholar
  5. Augugliaro V, Coluccia S, Loddo V, Marchese L, Martra G, Palmisano L, Schiavello M (1999) Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Appl Catal B Environ 20:15–27CrossRefGoogle Scholar
  6. Brezová V, Blažková A, Šurina I, Havlínová B (1997) Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions. J Photochem Photobiol A Chem 107:233–237CrossRefGoogle Scholar
  7. Caronna T, Gambarotti C, Palmisano L, Punta C, Recupero F (2003) Sunlight induced functionalisation of some heterocyclic bases in the presence of polycrystalline TiO2. Chem Commun 2350–2351Google Scholar
  8. Caronna T, Gambarotti C, Palmisano L, Punta C, Recupero F (2005) Sunlight-induced reactions of some heterocyclic bases with ethers in the presence of TiO2. A green route for the synthesis of heterocyclic aldehydes. J Photochem Photobiol A Chem 171:237–242CrossRefGoogle Scholar
  9. Caronna T, Gambarotti C, Mele A, Pierini M, Punta C, Recupero F (2007a) A green approach to the amidation of heterocyclic bases: the use of sunlight and air. Res Chem Intermed 33:311–317CrossRefGoogle Scholar
  10. Caronna T, Gambarotti C, Palmisano L, Punta C, Pierini M, Recupero F (2007b) Sunlight induced functionalisation reactions of heteroaromatic bases with aldehydes in the presence of TiO2: a hypothesis on the mechanism. J Photochem Photobiol A Chem 189:322–328CrossRefGoogle Scholar
  11. Das B, Banerjee J, Mahender G, Majhi A (2004) Organic reactions in water: an efficient zinc-mediated stereoselective synthesis of (E)- and (Z)-trisubstituted alkenes using unactivated alkyl halides. Org Lett 6:3349–3352CrossRefGoogle Scholar
  12. de Bruin B, Budzelaar PHM, Gal AW (2004) Functional models for rhodium-mediated olefin-oxygenation catalysis. Angew Chem Int Ed 43:4142–4157CrossRefGoogle Scholar
  13. Dey GR, Belapurkar AD, Kishore K (2004) Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J Photochem Photobiol A Chem 163:503–508CrossRefGoogle Scholar
  14. Dunn WW, Aikawa Y, Bard AJ (1981) Heterogeneous photosynthetic production of amino acids at Pt/TiO2 suspensions by near ultraviolet light. J Am Chem Soc 103:6893–6897CrossRefGoogle Scholar
  15. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365CrossRefGoogle Scholar
  16. Ferry JL, Glaze WH (1998) Photocatalytic reduction of nitro organics over illuminated titanium dioxide: role of the TiO2 surface. Langmuir 14:3551–3555CrossRefGoogle Scholar
  17. Fox MA (1983) Organic heterogeneous photocatalysis: chemical conversions sensitized by irradiated semiconductors. Acc Chem Res 16:314–321CrossRefGoogle Scholar
  18. Fox MA, Chen C (1981) Mechanistic features of the semiconductor photocatalyzed olefin-to-carbonyl oxidative cleavage. J Am Chem Soc 103:6757–6759CrossRefGoogle Scholar
  19. Fox MA, Kim Y-S, Abdel-Wahab AA, Dulay M (1990) Photocatalytic decontamination of sulfur-containing alkyl halides on irradiated semiconductor suspensions. Catal Lett 5:369–376CrossRefGoogle Scholar
  20. Frese KW (1991) Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J Electrochem Soc 138:3338–3344CrossRefGoogle Scholar
  21. Fujihira M, Satoh Y, Osa T (1981) Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293:206–207CrossRefGoogle Scholar
  22. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  23. Gonzalez MA, Howell SG, Sikdar SK (1999) Photocatalytic selective oxidation of hydrocarbons in the aqueous phase. J Catal 183:159–162CrossRefGoogle Scholar
  24. Green KJ, Rudham R (1993) Photocatalytic oxidation of propan-2-ol by semiconductor-zeolite composites. J Chem Soc/Faraday Trans 89:1867–1870CrossRefGoogle Scholar
  25. Halmann M, Katzir V, Borgarello E, Kiwi J (1984) Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. Sol Energy Mater 10:85–91CrossRefGoogle Scholar
  26. Herrmann JM (1995) Heterogeneous photocatalysis: an emerging discipline involving multiphase systems. Catal Today 24:157–164CrossRefGoogle Scholar
  27. Higashida S, Harada A, Kawakatsu R, Fujiwara N, Matsumura M (2006) Synthesis of a coumarin compound from phenanthrene by a TiO2-photocatalyzed reaction. Chem Commun 2804–2806Google Scholar
  28. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  29. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248CrossRefGoogle Scholar
  30. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637CrossRefGoogle Scholar
  31. Jacobson GB, Lee CT Jr, da Rocha SRP, Johnston KP (1999) Organic synthesis in water/carbon dioxide emulsions. J Org Chem 64:1207–1210CrossRefGoogle Scholar
  32. Kaneko S, Shimizu Y, Ohta K, Mizuno T (1998) Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J Photochem Photobiol A Chem 115:223–226CrossRefGoogle Scholar
  33. Kisch H (2001) Semiconductor photocatalysis for organic syntheses. Adv Photochem 62:93–143CrossRefGoogle Scholar
  34. Kraeutler B, Reiche H, Bard AJ, Hocker RG (1979) Initiation of free radical polymerization by heterogeneous photocatalysis at semiconductor powders. J Polym Sci/Polym Lett Ed 17:535–538CrossRefGoogle Scholar
  35. Lane BS, Burgess K (2003) Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem Rev 103:2457–2474CrossRefGoogle Scholar
  36. Li C, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82CrossRefGoogle Scholar
  37. Li X, Kutal CJ (2002) Photocatalytic selective epoxidation of styrene by molecular oxygen over highly dispersed titanium dioxide species on silica. J Mat Sci Lett 21:1525–1527CrossRefGoogle Scholar
  38. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  39. Mahdavi F, Bruton TC, Li Y (1993) Photoinduced reduction of nitro compounds on semiconductor particles. J Org Chem 58:744–746CrossRefGoogle Scholar
  40. Maldotti A, Amadelli R, Bartocci C, Carassiti V (1990) Photo-oxidative cyanation of aromatics on semiconductor powder suspensions I: oxidation processes involving radical species. J Photochem Photobiol A Chem 53:263–271CrossRefGoogle Scholar
  41. Maldotti A, Andreotti L, Molinari A, Tollari S, Penoni A, Cenini S (2000) Photochemical and photocatalytic reduction of nitrobenzene in the presence of cyclohexene. J Photochem Photobiol A Chem 133:129–133CrossRefGoogle Scholar
  42. Maldotti A, Molinari A, Amadelli R (2002) Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem Rev 102:3811–3836CrossRefGoogle Scholar
  43. Maldotti A, Amadelli R, Samiolo L, Molinari A, Penoni A, Tollari S, Cenini S (2005) Photocatalytic formation of a carbamate through ethanol-assisted carbonylation of p-nitrotoluene. Chem Commun 1749–1751Google Scholar
  44. Marcì G, Addamo M, Augugliaro V, Coluccia S, García-López E, Loddo V, Martra G, Palmisano L, Schiavello M (2003) Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J Photochem Photobiol A Chem 160:105–114CrossRefGoogle Scholar
  45. Mohamed OS, Gaber AEM, Abdel-Wahab AA (2002) Photocatalytic oxidation of selected aryl alcohols in acetonitrile. J Photochem Photobiol A Chem 148:205–210CrossRefGoogle Scholar
  46. Mozzanega MN, Herrmann JM, Pichat P (1977) Oxydation d′alkyltoluenes en alkylbenzaldehydes au contact de TiO2 irradie sous UV. Tetrahedron Lett 18:2965–2966CrossRefGoogle Scholar
  47. Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Barry Sharpless K (2005) “On Water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed 44:3275–3279CrossRefGoogle Scholar
  48. Navio JA, García Gomez M, Pradera Adrian MA, Fuentes Mota JJ (1996) Partial or complete heterogeneous photocatalytic oxidation of neat toluene and 4-picoline in liquid organic oxygenated dispersions containing pure or iron-doped titania photocatalysts. J Mol Catal A Chem 104:329–339CrossRefGoogle Scholar
  49. Noceti RP, Taylor CE, D’Este JR (1997) Photocatalytic conversion of methane. Catal Today 33:199–204CrossRefGoogle Scholar
  50. Ohtani B, Tsuru S, Nishimoto S-I, Kagiya T, Izawa K (1990) Photocatalytic one-step syntheses of cyclic imino acids by aqueous semiconductor suspensions. J Org Chem 55:5551–5553CrossRefGoogle Scholar
  51. Ohtani B, Iwai K, Kominami H, Matsuura T, Kera Y, Nishimoto S (1995a) Titanium(IV) oxide photocatalyst of ultra-high activity for selective N-cyclization of an amino acid in aqueous suspensions. Chem Phys Lett 242:315–319CrossRefGoogle Scholar
  52. Ohtani B, Kawaguchi J, Kozawa M, Nakaoka Y, Nosaka Y, Nishimoto S (1995b) Effect of platinum loading on the photocatalytic activity of cadmium(II) sulfide particles suspended in aqueous amino acid solutions. J Photochem Photobiol A Chem 90:75–80CrossRefGoogle Scholar
  53. Ohtani B, Pal B, Ikeda S (2003) Photocatalytic organic syntheses: selective cyclization of amino acids in aqueous suspensions. Catal Surv Asia 7:165–176CrossRefGoogle Scholar
  54. Pace A, Buscemi S, Vivona N, Caronna T (2000) Sensitized photoreduction of nitrosoazoles on titanium dioxide. Heterocycles 53:183–190CrossRefGoogle Scholar
  55. Pagliaro M, Campestrini S, Ciriminna R (2005) Ru-based oxidation catalysis. Chem Soc Rev 34:837–845CrossRefGoogle Scholar
  56. Palmisano G, Addamo M, Augugliaro V, Caronna T, García-López E, Loddo V, Palmisano L (2006) Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chem Commun 1012–1014Google Scholar
  57. Palmisano G, Addamo M, Augugliaro V, Caronna T, Di Paola A, García-López E, Loddo V, Marcì G, Palmisano L, Schiavello M (2007a) Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catal Today 122:118–127CrossRefGoogle Scholar
  58. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007b) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 3425–3437Google Scholar
  59. Palmisano G, Yurdakal S, Augugliaro V, Loddo V, Palmisano L (2007c) Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared TiO2 catalyst. Adv Synth Catal 349:964–970Google Scholar
  60. Park H, Choi W (2005) Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catal Today 101:291–297CrossRefGoogle Scholar
  61. Park KH, Joo HS, Ahn KI, Jun K (1995) One step synthesis of 4-ethoxy-1, 2, 3, 4-tetrahydroquinoline from nitroarene and ethanol: a TiO2 mediated photocatalytic reaction. Tetrahedron Lett 36:5943–5946CrossRefGoogle Scholar
  62. Park JW, Hong MJ, Park KK (2001) Photochemical reduction of 1, 2-diketones in the presence of TiO2. Bull Korean Chem Soc 22:1213–1216Google Scholar
  63. Pillai UR, Sahle-Demessie E (2002) Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. J Catal 211:434–444Google Scholar
  64. Rafelt JS, Clark JH (2000) Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis. Catal Today 57:33–44CrossRefGoogle Scholar
  65. Sahle-Demessie E, Gonzalez M, Wang Z, Biswas P (1999) Synthesizing alcohols and ketones by photoinduced catalytic partial oxidation of hydrocarbons in TiO2 film reactors prepared by three different methods. Ind Eng Chem Res 38:3276–3284CrossRefGoogle Scholar
  66. Schiavello M (ed) (1988) Photocatalysis and Environment. Trends and Applications. Kluwer, DordrechtGoogle Scholar
  67. Shi Y (2004) Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc Chem Res 37:488–496CrossRefGoogle Scholar
  68. Shimizu K-I, Kaneko T, Fujishima T, Kodama T, Yoshida H, Kitayama Y (2002) Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays. Appl Catal A 225:185–191CrossRefGoogle Scholar
  69. Shioya Y, Ikeue K, Ogawa M, Anpo M (2003) Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal A Gen 254:251–259CrossRefGoogle Scholar
  70. Shiraishi Y, Morishita M, Hirai T (2005a) Acetonitrile-assisted highly selective photocatalytic epoxidation of olefins on Ti-containing silica with molecular oxygen. Chem Commun 5977–5979Google Scholar
  71. Shiraishi Y, Saito N, Hirai T (2005b) Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J Am Chem Soc 127:12820–12822CrossRefGoogle Scholar
  72. Slamet, Nasution HW, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319CrossRefGoogle Scholar
  73. Subba Rao KV, Subrahmanyam M (2002) Synthesis of 2-methylpiperazine by photocatalytic reaction in a non-aqueous suspension of semiconductor-zeolite composite catalysts. Photochem Photobiol Sci 1:597–599CrossRefGoogle Scholar
  74. Subba Rao KV, Srinivas B, Prasad AR, Subrahmanyam M (2000) A novel one step photocatalytic synthesis of dihydropyrazine from ethylenediamine and propylene glycol. Chem Commun 1533–1534Google Scholar
  75. Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273CrossRefGoogle Scholar
  76. ten Brinks GJ, Arends IWCE, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639CrossRefGoogle Scholar
  77. Tseng I-H, Wu JCS, Chou H-Y (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440CrossRefGoogle Scholar
  78. Wang CM, Mallouk TE (1990) New photochemical method for selective fluorination of organic molecules. J Am Chem Soc 112:2016–2018CrossRefGoogle Scholar
  79. Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212CrossRefGoogle Scholar
  80. Yamashita H, Nishiguchi H, Kamada N, Anpo M, Teraoka Y, Hatano H, Ehara SK, Palmisano L, Sclafani A, Schiavello M, Fox MA (1994) Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res Chem Intermed 20:815–823CrossRefGoogle Scholar
  81. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45:221–227CrossRefGoogle Scholar
  82. Yoneyama H, Haga S, Yamanaka S (1989) Photocatalytic activities of microcristalline titania incorporated in sheet silicates of clay. J Phys Chem 93:4833–4837CrossRefGoogle Scholar
  83. Yoshida H, Murata C, Hattori T (1999) Photocatalytic epoxidation of propene by molecular oxygen over highly dispersed titanium oxide species on silica. Chem Commun 1551–1552Google Scholar
  84. Zhang T, You L, Zhang Y (2006) Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles. Dyes Pigm 68:95–100CrossRefGoogle Scholar
  85. Zuwei X, Ning Z, Yu S, Kunlan L (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139–1141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • Vincenzo Augugliaro
  • Tullio Caronna
  • Agatino Di Paola
  • Giuseppe Marcì
  • Mario Pagliaro
  • Giovanni Palmisano
  • Leonardo Palmisano
    • 1
    Email author
  1. 1.“Schiavello-Grillone” Photocatalysis Group, Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations