Biological Ontologies

  • Patrick Lambrix
  • He Tan
  • Vaida Jakoniene
  • Lena Strömbäck

Abstract

Biological ontologies define the basic terms and relations in biological domains and are being used among others, as community reference, as the basis for interoperability between systems, and for search, integration and exchange of biological data. In this chapter we present examples of biological ontologies and ontology-based knowledge, show how biological ontologies are used and discuss some important issues in ontology engineering.

Key words

ontologies ontology alignment ontology-based search ontology development Gene Ontology (GO) Medical Subject Headings (MeSH) Open Biomedical Ontologies (OBO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baker C.J.O., Shaban-Nejad A., Su X., Haarslev V., and Butler G. Semantic Web Infrastructure for Fungal Enzyme Biotechnologists, Journal of Web Semantics, Special issue on Semantic Web for the Life Sciences 4(3), 2006.Google Scholar
  2. [2]
    BioCreAtlvE, Critical Assessment for Information Extraction in Biology; http://biocreative.sourceforge.net/.Google Scholar
  3. [3]
    BioPAX, Biological Pathway Exchange; http://www.biopax.org/.Google Scholar
  4. [4]
    Blaschke C., Hirschman L., and Valencia A. Information extraction in molecular biology, Briefings in Bioinformatics 3(2):154–165, 2002.PubMedCrossRefGoogle Scholar
  5. [5]
    Coté R., Jones P., Apweiler R., and Hermjakob H. The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries, BMC Bioinformatics 7:97, 2006.PubMedCrossRefGoogle Scholar
  6. [6]
    Collins F., Green E., Guttmacher A., and Guyer M. A vision for the future of genomics research, Nature 422:835–847, 2003.PubMedCrossRefGoogle Scholar
  7. [7]
    GO, The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology, Nature Genetics 25(1):25–29, 2000; http://www.geneontology.org/.CrossRefGoogle Scholar
  8. [8]
    Goble C, Stevens R., Ng G., Bechhofer S., Paton N., Baker P., Peim M., and Brass A. Transparent access to multiple bioinformatics information sources, IBM Systems Journal 40(2):532–551, 2001.CrossRefGoogle Scholar
  9. [9]
    Gómez-Pérez A. Ontological Engineering: A state of the Art, Expert Update 2(3):33–43, 1999.Google Scholar
  10. [10]
    Guarino N. and Giaretta P. Ontologies and Knowledge Bases: Towards a Terminological Clarification, in: Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, Mars, ed., IOS Press, 25–32, 1995.Google Scholar
  11. [11]
    Hermjakob H., Montecchi-Palazzi L., Bader G., Wojcik J., Salwinski L., Ceol A., et al. The HUPO PSI’s Molecular Interaction format-a community standard for the representation of protein interaction data, Nature Biotechnology 22(2): 177–183, 2004.PubMedCrossRefGoogle Scholar
  12. [12]
    Hucka M., Finney A., Sauro H., Bolouri H., Doyle J., Kitano H., and the rest of the SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics 19(4):524–531, 2003.PubMedCrossRefGoogle Scholar
  13. [13]
    Jakoniene V. and Lambrix P. Ontology-based integration for bioinformatics, in: Proceedings of the VLDB Workshop on Ontologies-based techniques for DataBases and Information Systems, 55–58, 2005.Google Scholar
  14. [14]
    Jakoniene V., Rundqvist D., and Lambrix P. A method for similarity-based grouping of biological data, in: Proceedings of the 3rd International Workshop on Data Integration in the Life Sciences, LNBI 4075, 136–151, 2006.Google Scholar
  15. [15]
    Jasper R. and Uschold M. A Framework for Understanding and Classifying Ontology Applications, in: Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends, 1999.Google Scholar
  16. [16]
    Köhler J., Munn K., Rüegg A., Skusa A, and Smith B. Quality control for terms and definitions in ontologies and taxonomies, BMC Bioinformatics 7:212, 2006.PubMedCrossRefGoogle Scholar
  17. [17]
    Lambrix, P. Ontologies in Bioinformatics and Systems Biology, in: Artificial Intelligence Methods and Tools for Systems Biology, Dubitzky and Azuaje, eds., Springer, chapter 8, 129–146, 2004.Google Scholar
  18. [18]
    Lambrix, P. Towards a Semantic Web for Bioinformatics using Ontology-based Annotation, in: Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises, 3–7. Invited talk, 2005.Google Scholar
  19. [19]
    Lambrix P. and Tan H. SAMBO-A System for Aligning and Merging Biomedical Ontologies, Journal of Web Semantics, Special issue on Semantic Web for the Life Sciences 4(3), 2006a.Google Scholar
  20. [20]
    Lambrix, P. and Tan H. Ontology Alignment and Merging, in: Anatomy Ontologies for Bioinformatics: Principles and Practice, Burger, Davidson and Baldock, eds., Springer. To appear, 2006b.Google Scholar
  21. [21]
    Lord P., Stevens R., Brass A., and Goble C. Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation, Bioinformatics 19(10): 1275–1283, 2003.PubMedCrossRefGoogle Scholar
  22. [22]
    MeSH, Medical Subject Headings; http://www.nlm.nih.gov/mesh/.Google Scholar
  23. [23]
    Mukherjea S. Information retrieval and knowledge discovery utilising a biomedical Semantic Web, Briefings in Bioinformatics 6(3):252–262, 2005.PubMedCrossRefGoogle Scholar
  24. [24]
    Neches R., Fikes R., Finin T., Gruber T., Senator T., and Swartout, W. Enabling technology for knowledge engineering, AI Magazine 12(3):26–56, 1991.Google Scholar
  25. [25]
    OBO, Open Biomedical Ontologies; http://obo.sourceforge.net/.Google Scholar
  26. [26]
    OBO Foundry; http://obofoundry.org/.Google Scholar
  27. [27]
    OntoWeb, 2002, Deliverable 1.3: A survey on ontology tools; 2002, Deliverable 2.1: Successful Scenarios for Ontology-based Applications; 2002, Deliverable 2.2: Guidelines for the selection of techniques for kinds of ontology-based applications; 2004, Deliverable 1.6: A survey on ontology-based applications. E-commerce, knowledge management, multimedia, information sharing and educational applications; http://www.ontoweb.org/.Google Scholar
  28. [28]
    Orchard S., Montecchi-Palazzi L., Hermjakob H., and Apweiler R. The Use of Common Ontologies and Controlled Vocabularies to Enable Data Exchange and Deposition for Complex Proteomic Experiments, in: Proceedings of the Pacific Symposium on Biocomputing 10:186–196, 2005.Google Scholar
  29. [29]
    Protégé; http://protege.stanford.edu/.Google Scholar
  30. [30]
    REWERSE, EU Network of Excellence on Reasoning on the Web with Rules and Semantics, Working group A2; http://rewerse.net/.Google Scholar
  31. [31]
    Rojas I., Ratsch E., Saric J., and Wittig U. Notes on the use of ontologies in the biochemical domain, In Silico Biology 4:0009, 2003.Google Scholar
  32. [32]
    SBML, Systems Biology Markup Language; http://sbml.org.Google Scholar
  33. [33]
    Schulze-Kremer S. Ontologies for molecular biology and bioinformatics, In Silico Biology 2:0017, 2002.Google Scholar
  34. [34]
    Smith B., Ceusters W., Klagges B., Köhler J., Kumar A., Lomax J., Mungall C, Neuhaus F., Rector A., and Rosse C. Relations in biomedical ontologies, Genome Biology 6:R46, 2005.PubMedCrossRefGoogle Scholar
  35. [35]
    SOFG, Standards and Ontologies for Functional Genomics; http://www.sofg.org/.Google Scholar
  36. [36]
    Stevens R., Goble C., and Bechhofer S. Ontology-based knowledge representation for bioinformatics, Briefings in Bioinformatics 1(4):398–414, 2000.PubMedCrossRefGoogle Scholar
  37. [37]
    Strömbäck L., Hall D., and Lambrix P. A review of standards for data exchange within systems biology, Proteomics. Invited contribution. To appear, 2006a.Google Scholar
  38. [38]
    Strömbäck L., Jakoniene V., Tan H., and Lambrix P. Representing, storing and accessing molecular interaction data: a review of models and tools, Briefings in Bioinformatics. Invited contribution. To appear, 2006b.Google Scholar
  39. [39]
    Strömbäck L., and Lambrix P. Representations of molecular pathways: An evaluation of SBML, PSI MI and BioPAX, Bioinformatics 21(24):4401–4407, 2005.PubMedCrossRefGoogle Scholar
  40. [40]
    UMLS, Unified Medical Language System; http://www.nlm.nih.gov/pubs/factsheets/umls.html.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Patrick Lambrix
    • 1
  • He Tan
    • 1
  • Vaida Jakoniene
    • 1
  • Lena Strömbäck
    • 1
  1. 1.Department of Computer and Information ScienceLinköpings UniversitetSweden

Personalised recommendations