Solar Variability and Planetary Climates pp 273-286 | Cite as
The Middle Atmospheric Ozone Response to the 11-Year Solar Cycle
Abstract
Because of its chemical and radiative properties, atmospheric ozone constitutes a key element of the Earth’s climate system. Absorption of sunlight by ozone in the ultraviolet wavelength range is responsible for stratospheric heating, and determines the temperature structure of the middle atmosphere. Changes in middle atmospheric ozone concentrations result in an altered radiative input to the troposphere and to the Earth’s surface, with implications on the energy balance and the chemical composition of the lower atmosphere. Although a wide range of ground- and satellite-based measurements of its integrated content and of its vertical distribution have been performed since several decades, a number of uncertainties still remain as to the response of middle atmospheric ozone to changes in solar irradiance over decadal time scales. This paper presents an overview of achieved findings, including a discussion of commonly applied data analysis methods and of their implication for the obtained results. We suggest that because it does not imply least-squares fitting of prescribed periodic or proxy data functions into the considered times series, time-domain analysis provides a more reliable method than multiple regression analysis for extracting decadal-scale signals from observational ozone datasets. Applied to decadal ground-based observations, time-domain analysis indicates an average middle atmospheric ozone increase of the order of 2% from solar minimum to solar maximum, which is in reasonable agreement with model results.
Keywords
ozone-climate relationships stratospheric ozone solar signal 11-year solar cyclePreview
Unable to display preview. Download preview PDF.
References
- Angell, J. K.: 1989, ‘On the relation between atmospheric ozone and sunspot number, J. Clim. 2, 1404–1416.CrossRefADSGoogle Scholar
- Bates, J. R.: 1981, ‘A dynamical mechanism through which variations in solar ultra violet radiation can influence tropospheric climate’, J. Geophys. Res. 104, 27,321–27,339.Google Scholar
- Brasseur, G.: 1993, ‘The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model’, J. Geophys. Res. 98, 20,079–23,090.CrossRefGoogle Scholar
- Chapman, S.: 1930, ‘On ozone and atomic oxygen in the upper atmosphere’, Phil. Mag. S. 110, 369–383.Google Scholar
- Chubachi, S.: 1985, ‘A special ozone observation at Syowa Station, Antarctica from February 1982 to January 1983’, in Atmospheric Ozone, Proceedings of the Quadrennial Ozone symposium, Halkidiki, Greece, September 3–7, 1984, 285–289.Google Scholar
- Crutzen, P. J.: 1974, ‘Estimates of possible future ozone reductions from continued use of fluorochloro-methanes (CF2Cl2, CFCl3)’, Geophys. Res. Lett 1, 205–208.ADSCrossRefGoogle Scholar
- Cunnold, D. M., Yang, E.-S., Newchurch, M. J., Reinsel, G. C., Zawodny, J. M., and Russell III, J. M.: 2004, ‘Comment on “Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?” by W. Steinbrecht et al.’, J. Geophys. Res. 109, doi:10.1029/2004JD004826.Google Scholar
- Dobson, G. M. B. and Harrison, D. N.: 1927, ‘Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. — Part II’, Proc. R. Soc. Lond. A 114, 521–541.CrossRefADSGoogle Scholar
- European Commission: 2003, ‘Ozone Climate Interactions’, Air pollution research report No. 81, EUR 20623, 143 pp., Luxembourg.Google Scholar
- Egorova, T., Rozanov, E., Manzini, E., Haberreiter, M., Schmutz, W., Zubov, V., and Peter, T.: 2004, ‘Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model’, Geophys. Res. Lett. 31, doi:10.1029/2003GL019294.Google Scholar
- Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: 1985, ‘Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction’, Nature 315, 207–210.CrossRefADSGoogle Scholar
- Fleming, E. L., Chandra, S., Jackman, C. H., Considine, D. B., and Douglass, A. R.: 1995, ‘The middle atmospheric response to short and long-term solar UV varaitions: Analysis of observations and 2D model results’, J. Atmos. Terr. Phys. 57, 333–365.CrossRefADSGoogle Scholar
- Fröhlich, C.: 2006, ‘Solar irradiance variability since 1978’, Space Sci. Rev., this volume, doi 10.1007/s11214-006-9046-5.Google Scholar
- Gleisner, H. and Thejll, P.: 2003, ‘Patterns of tropospheric response to solar variability’, Geophys. Res. Lett. 30, doi:10.1029/2003GL017129.Google Scholar
- Gray, L., Crooks, S., Palmer, M., Pascoe, C., and Sparrow, S.: 2006, ‘A possible transfer mechanism for the 11-year solar cycle to the lower stratosphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9069-y.Google Scholar
- Haigh, J. D.: 1994, ‘The role of stratospheric ozone in modulating the solar radiative forcing of climate’, Nature 370, 544–546.CrossRefADSGoogle Scholar
- Haigh, J. D.: 1996, ‘The impact of solar variability on climate’, Science 272, 981–984.CrossRefADSGoogle Scholar
- Haigh, J. D.: 1999, ‘A GCM study of climate change in response to the 11-year solar cycle, Q. J. Roy. Meteorol. Soc. 125, 871–892.CrossRefADSGoogle Scholar
- Haigh, J. D.: 2006, ‘Solar influences on dynamical coupling between the stratosphere and troposphere’, Space Sci. Rev., this volume, doi:10.1007/s11214-006-9067-0.Google Scholar
- Haigh, J. D., Austin, J., Butchart, N., Chanin, M.-L., Crooks, S., Gray, L. J., Halenka, T., Hampson, J., Hood, L. L., Isaksen, I. S. A., Keckhut, P., Labitzke, K., Langematz, U., Matthes, K., Palmer, M., Rognerud, B., Tourpali, K., and Zerefos, C.: 2004, ‘Solar variability and climate: Selected results from the SOLICE project’, SPARC Newsletter 23, 19–29.Google Scholar
- Hines, C. O.: 1974, ‘A possible mechanism for the production of Sun-weather correlations’, J. Atmos. Sci. 31, 589–591.CrossRefADSGoogle Scholar
- Hood, L. L.: 1997, ‘The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere’, J. Geophys. Res. 102, 1355–1370.CrossRefADSGoogle Scholar
- Hood, L. L.: 2004, ‘Effects of solar UV variability on the stratosphere’, in J. Pap et al. (eds.), Solar Variability and its Effect on the Earth’s Atmosphere and Climate System, AGU Monograph Series, American Geophysical Union, Washington D.C., pp. 283–303.Google Scholar
- Ingram, W. J.: 2006, ‘Detection and attribution of climate change, and understanding solar influence on climate’, Space Sci. Rev., this volume, doi:10.1007/s11214-006-9057-2.Google Scholar
- Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Lopez-Puertas, M.: 2006, ‘Satellite measurements of middle atmospheric impacts by solar proton events in Solar Cycle 23’, Space Sci. Rev., this volume, doi:10.1007/s11214-006-9071-4.Google Scholar
- Kodera, K.: 2004, ‘Solar influence on the Indian Ocean Monsoon through dynamical processes’, Geophys. Res. Lett. 31, doi:10.1029/2004GL020928.Google Scholar
- Kodera, K.: 2006, ‘The role of dynamics in solar forcing’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9066-1.Google Scholar
- Kodera, K. and Kuroda, Y.: 2002, ‘Dynamical response to the solar cycle’, J. Geophys. Res. 107, doi:10.1029/2002JD002224.Google Scholar
- Labitzke, K.: 2006, ‘Solar variation and stratospheric response’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9061-6.Google Scholar
- Langematz, U., Grenfell, J. L., Matthes, K., Mieth, P., Kunze, M., Steil, B., and Brühl, C.: 2005, ‘Chemical effects in 11-year solar cycle simulations with the Freie Universität Berline Clima Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM)’, J. Geophys. Res. 32, doi:10.1029/2005GL022686.Google Scholar
- Langen, J.: 2006, ‘Recent space data — introductory paper part V’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9070-5.Google Scholar
- Lee, H. and Smith, A. K.: 2003, ‘Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades’, J. Geophys. Res. 108, doi:10.1029/2001JD001503.Google Scholar
- Matthes, K., Kodera, K., Haigh, J. D., Shindell, D. T., Shibata, K., Langematz, U., Rozanov, E., and Kuroda, Y.: 2003, ‘GRIPS solar experiments intercomparison project: Initial results’, Pap. Meteorol. Geophys., 54, 71–90.CrossRefGoogle Scholar
- Matthes, K., Langematz, U., Gray, L. J. Kodera, K., and Labitzke, K.: 2004, ‘Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CHAM)’, J. Geophys. Res. 109, doi:10.1029/2003JD004012.Google Scholar
- Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: 2006, ‘The transfer of the solar signal from the stratosphere to the troposphere: Northern Winter’, J. Geophys. Res. 111, doi:10.1029/2005JD006283.Google Scholar
- McCormack, J. P. and Hood, L. L.: 1996, ‘Apparent solar cycle variations of uppers stratospheric ozone and temperature: Latitude and seasonal dependences’, J. Geophys. Res. 101, 20,933–20,944.CrossRefADSGoogle Scholar
- Miller, A. J., Hollandsworth, S. M., Flynn, L. E., Tiao, G. C., Reinsel, G. C., Bishop, L., McPeters, R. D., Planet, W. G., DeLuisi, J. J., Mateer, C. L., Wuebbles, D., Kerr, J., and Nagatani, R. M.: 1996, ‘Comparisons of observed ozone trends and solar effects in the stratosphere through examination of ground-based Umkehr and combined solar backscattered ultraviolet (SBUV) and SBUV 2 satellite data’, J. Geophys. Res. 101, 9017–9021.CrossRefADSGoogle Scholar
- Molina, M. J. and Rowland, F. S.: 1974, ‘Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone’, Nature 249, 810–812.CrossRefADSGoogle Scholar
- Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J. M., and Russell III, J. M.: 2003, ‘Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery’, J. Geophys. Res. 108, doi:10.1029/2003JD003471.Google Scholar
- Press, W. H., Teukolsky, S. A. Vetterling, W. T., and Flannery, B. P.: 1992, ‘Numerical recipes in C — the art of scientific computing (2nd Edition)’, Cambridge University Press, Cambridge, 994 pp.MATHGoogle Scholar
- Reinsel, G. C., Weatherhead, E. C., Tiao, G. C., Miller, A. J., Nagatani, R. M., Wuebbles, D. J., and Flynn, L. E.: 2002, ‘On detection of turnaround and recovery in trend for ozone’, J. Geophys. Res. 107, doi:10.1029/2001JD000500.Google Scholar
- Rottman, G.: 2006, ‘Measurement of total and spectral solar irradiance’, Space Sci. Rev., this volume, doi:10.1007/s11214-006-9045-6.Google Scholar
- Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., and Zubov, V. A.: 2004, ‘Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model, J. Geophys. Res. 109, doi:10.1029/2003JD003796.Google Scholar
- Rozanov, E., Callis, L., Schlesinger, M., Yang, F., Andronova, N., and Zubov, V.: 2005, ‘Atmospheric response to NOy source due to energetic electron precipitation’, J. Geophys. Res. 32, doi:10.1029/2005GL023041.Google Scholar
- Salby, M. L. and Callaghan, P. F.: 2006, ‘Influence of the solar cycle on the general circulation of the stratosphere and upper troposphere’, Space Sci. Rev., this volume, doi:10.1007/s11214-006-9064-3.Google Scholar
- Schmidt, H. and Brasseur, G. P.: 2006, ‘The response of the middle atmosphere to solar cycle forcing in the Hamburg model of the neutral and ionized atmosphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9068-z.Google Scholar
- Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: 1999, ‘Solar cycle variability, ozone, and climate’, Science 284, 305–308.CrossRefADSGoogle Scholar
- Shindell, D. T., Schmidt, G. A., Miller, R. L., and Rind, D.: 2001, ‘Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing’, J. Geophys. Res. 106, 7193–7210.CrossRefADSGoogle Scholar
- Sinnhuber, B.-M., von der Gathen P., Sinnhuber, M., Rex, M., König-Langlo G., and Oltmans, S. J.: 2005, ‘Large decadal scale changes of polar ozone suggest solar influence’, Atmos Chem. Phys. Discuss. 5, 12,103–12,117.ADSCrossRefGoogle Scholar
- Staehelin, J., Harris, N. R. P., Appenzeller, C., and Eberhard, J.: 2001, ‘Ozone trends: A review’, Rev. Geophys. 39(2), 231–290.CrossRefADSGoogle Scholar
- Steinbrecht, W., Claude, H., and Winkler, P.: 2004, ‘Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?’, J.Geophys.Res. 109, doi:10.1029/2003JD004284.Google Scholar
- Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodny, J.: 1992, ‘Measured trends in stratospheric ozone’, Science 256, 342–349.CrossRefADSGoogle Scholar
- Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., and Bruehl, C.: 2003, ‘Stratospheric and tropospheric response to enhanced solar UV radiation: A model study’, Geophys. Res. Lett. 30, doi:10.1029/2002GL016650.Google Scholar
- Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., Brühl, C., and Manzini, E.: 2005, ‘Solar cycle modulation of the Arctic oscillation in a chemistry-climate model’, Geophys. Res. Lett. 32 doi:10.1029/2005GL023509.Google Scholar
- vanLoon, H., Meehl, G.A., and Arblaster, J.M.: 2004, ‘A decadal solar effect in the tropics in July–August’, J. Atm. Sol.-Terr. Phys. 66, 1767–1778.CrossRefADSGoogle Scholar
- WMO (World Meteorological Organization): 2003, ‘Scientific Assessment of Ozone Depletion: 2002’, Global Ozone Research and Monitoring Project — Report No. 47, Geneva, 498 pp.Google Scholar
- Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerud, B., and Isaksen, I. S. A.: 1997, ‘Solar activity-total column ozone relationships: Observations and model studies with heterogeneous chemistry’, J. Geophys. Res. 102, 1561–1569.CrossRefADSGoogle Scholar
- Zerefos, C. S., Tourpali, K., Isaksen, I. S. A., and Schuurmans, C. J. E.: 2001, ‘Long term solar induced variations in total ozone, stratospheric temperatures and the tropopause’, Adv. Sp. Res. 27, 1943–1948.CrossRefADSGoogle Scholar
- Zerefos, C. S., Tourpali, K., and Balis, D.: 2005, ‘Solar activity-ozone relationships in the vertical distribution of ozone’, Int. J. Rem. Sensing 26, 3449–3454.CrossRefADSGoogle Scholar