The Climate Response to the Astronomical Forcing

  • M. Crucifix
  • M. F. Loutre
  • A. Berger
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 23)

Abstract

Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.

Keywords

astronomical theory of palæoclimates Milankovitch insolation CO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, J. F., McIntyre, K., and Schrag, D. P.: 2002, ‘The salinity, temperature, and delta O-18 of the glacial deep ocean’, Science 298, 1769–1773.CrossRefADSGoogle Scholar
  2. Archer, D., Winguth, A., Lea, D., and Mahowald, N.: 2000, ‘What caused the glacial/interglacial atmospheric pCO2 cycles?’, Rev. Geophys. 38, 159–189.CrossRefADSGoogle Scholar
  3. Berger, A.: 1977, ‘Long-term variations of the Earth’s orbital elements’, Celest. Mec. 15, 53–74.CrossRefADSGoogle Scholar
  4. Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.CrossRefADSGoogle Scholar
  5. Berger, A. and Loutre, M. F.: 1991, ‘Insolation values for the climate of the last 10 million years’, Quat. Sci. Rev. 10, 297–317.CrossRefADSGoogle Scholar
  6. Berger, A., Loutre, M. F., and Gallée, H.: 1998, ‘Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky’, Clim. Dyn. 14, 615–629.CrossRefGoogle Scholar
  7. Berger, A., Li, X. S., and Loutre, M. F.: 1999, ‘Modelling northern hemisphere ice volume over the last 3 Ma’, Quat. Sci. Rev. 18, 1–11.CrossRefADSGoogle Scholar
  8. Braconnot, P., Harrison, S. P., Joussaume, S., Hewitt, C. D., Kitoh, A., Kutzbach, J. E., Liu, Z., Otto-Bliesner, B., Syktus, J., and Weber, N.: 2004, ‘Evaluation of PMIP coupled ocean-atmosphere simulations of the mid-holocene’, in R. W. Batterbee, F. Gasse, and C. E. Stickley (eds.), Past Climate Variability Through Europe and Africa, pp. 515–534.Google Scholar
  9. Bretagnon, P.: 1974, ‘Termes à longues périodes dans le système solaire’, Astron. Astroph. 30, 141–154.ADSGoogle Scholar
  10. Broecker, W. S. and Peng, T. H.: 1989, ‘The cause of the glacial to interglacial atmospheric CO2’, Global Biogeochem. Cycles 3, 215–239.ADSCrossRefGoogle Scholar
  11. Chapront, J., Bretagnon, P., and Mehl, M.: 1975, ‘Un formulaire pour le calcul des perturbations d’ordres élevés dans les problèmes planétaires’, Celes. Mech. 34, 165–184.CrossRefGoogle Scholar
  12. Claussen, M., Brovkin, V., Calov, R., Ganopolski, A., and Kubatzki, C.: 2005, ‘Did humankind prevent a Holocene glaciation?’, Clim. Change 69, 409–417.CrossRefGoogle Scholar
  13. Crucifix, M. and Loutre, M. F.: 2002, ‘Transient simulations over the last interglacial period (126-115 kyr BP): feedback and forcing analysis’, Clim. Dyn. 19, 419–433.Google Scholar
  14. Crucifix, M., Loutre, M. F., and Berger, A.: 2005, ‘Commentary on “the anthropogenic greenhouse era began thousands of years ago”’, Clim. Change 69, 419–426.CrossRefGoogle Scholar
  15. Danjon, A.: 1980, Astronomie générale. Libraire scientifique et technique A. Blanchard.Google Scholar
  16. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: 2005, ‘Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years’, Nature 433, 294–298.CrossRefADSGoogle Scholar
  17. de Noblet, N., Braconnot, P., Joussaume, S., and Masson, V.: 1996, ‘Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation at 126, 115 and 6 kBP’, Clim. Dyn. 12, 589–603.CrossRefGoogle Scholar
  18. EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core’, Nature 429, 623–628.CrossRefGoogle Scholar
  19. Gallée, H., van Ypersele, J. P. Fichefet, T., Marsiat, I., Tricot, C., and Berger, A.: 1992, ‘Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part II: Response to insolation and CO2 variation’, J. Geophys. Res. 97, 15, 713–15, 740.ADSGoogle Scholar
  20. Ghil, M. and Le Treut, H.: 1981, ‘A climate model with cryodynamics and geodynamics’, J. Geophys. Res. 86, 5262–5270.ADSCrossRefGoogle Scholar
  21. Hargreaves, J. C. and Annan, J. D.: 2002, ‘Assimilation of paleo-data in a simple Earth system model’, Clim. Dyn. 19, 371–381.CrossRefGoogle Scholar
  22. Harrison, S. P., Kutzbach, J. E., Prentice, I. C., Behling, P. J. and Sykes, M. T.: 1995, ‘The response of Northern Hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the last interglacial’, Quat. Res. 43, 174–184.CrossRefGoogle Scholar
  23. Hays, J., Imbrie, J. and Shackleton, N.: 1976, ‘Variations in the Earth’s orbit: Pacemaker of ice ages’, Science 194, 1121–1132.CrossRefADSGoogle Scholar
  24. Imbrie, J. and Imbrie, J. Z.: 1980, ‘Modelling the climatic response to orbital variations’, Science 207, 943–953.CrossRefADSGoogle Scholar
  25. Imbrie, J. J., Hays, J. D., Martinson, D. G., McIntyre A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: 1984, ‘The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18Orecord’, in A. Berger, J., Imbrie J., Hays, J., Kukla, and B. Saltzman (eds.), Milankovitch and Climate, Part I. Norwell, Mass., pp. 269–305.Google Scholar
  26. Joussaume, S. and Braconnot, P.: 1997, ‘Sensitivity of paleoclimate simulation results to season definition’, J. Geophys. Res. 102, 1943–1956.CrossRefADSGoogle Scholar
  27. Kageyama, M., Charbit, S., Ritz, C., Khodri, M., and Ramstein, G.: 2004, ‘Quantifying ice-sheet feedbacks during the last glacial inception’, Geophysical Research Letters 31, L24903, doi:10.1029/2004GL021339.CrossRefGoogle Scholar
  28. Köhler, P. and Fischer, H.: 2006, ‘Proposing a mechanistic understnading of changes in atmospheric CO2 during the last 740 000 years’, Clim. Past Discussions 2, 1–42.ADSCrossRefGoogle Scholar
  29. Kutzbach, J. E.: 1981, ‘Monsoon climate of the early Holocene: Climate experiment using the Earth’s orbital parameters for 9000 years ago’, Science 214, 59–61.CrossRefADSGoogle Scholar
  30. Lagrange, J. L.: 1781, ‘Théorie des variations séculaires des éléments des planètes 1.’, in Nouveaux mémoires de l’Académie Royale des Sciences et Belles-Lettres, Berlin, pp. 199–276.Google Scholar
  31. Laplace, P. S.: 1773, ‘Tome VIII’, in Oeuvres complètes. Compilation published by Gauthier-Villars, in 1891, p. 199.Google Scholar
  32. Laskar, J.: 1984, ‘Théorie générale planétaire: Eléments orbitaux des planètes sur 1 million d’années’, Ph.D. thesis, Obervatoire de Paris, Meudon, France.Google Scholar
  33. Laskar, J.: 1988, ‘Secular evolution of the solar system over 10 millions years’, Astron. Astroph. 198, 341–362.ADSGoogle Scholar
  34. Laskar, J.: 1999, ‘The limits of Earth orbital calculations for geological time-scale use’, Phil. Trans. R. Soc. Lond. A 357, 1735–1759.CrossRefADSGoogle Scholar
  35. Laskar, J., Joutel, F., and Boudin, F.: 1993, ‘Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr’, Astron. Astroph. 270, 522–533.ADSGoogle Scholar
  36. Laskar, J., Robutel, P., Joutel, F., Boudin, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: 2004, ‘A long-term numerical solution for the insolation quantities of the Earth’, Astron. Astroph. 428, 261–285.CrossRefADSGoogle Scholar
  37. Lourens, L. J., Wehausen, R., and Brumsack, H. J.: 2001, ‘Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years’, Nature 409, 1029–1033.CrossRefADSGoogle Scholar
  38. Loutre, M. F. and Berger, A.: 2003, ‘Marine Isotope Stage 11 as an analogue for the present interglacial’, Glob. Plan. Change 36, 209–217.CrossRefADSGoogle Scholar
  39. Loutre, M. F., Paillard, D., Vimeux, F., and Cortijo, E.: 2004, ‘Does mean annual insolation have the potential to change the climate?’, Earth Planet. Sci. Lett. 221, 1–14.CrossRefADSGoogle Scholar
  40. Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: 1990, ‘Iron in Antarctic waters’, Nature 345, 156–158.CrossRefADSGoogle Scholar
  41. Meissner, K. J., Weaver, A. J., and Matthews, H. D.: 2003, ‘The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model’, Clim. Dyn. 21, 515–537.CrossRefGoogle Scholar
  42. Milankovitch, M.: 1941, Canon of Insolation and the Ice-Age Problem. Edited and translated by the Serbian Academy of Science and Arts, 1998, Narodna biblioteka Srbije, Beograd.Google Scholar
  43. Mudelsee, M. and Schulz, M.: 1997, ‘The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka’, Earth Planet. Sci. Lett. 151, 117–123.CrossRefADSGoogle Scholar
  44. Otterman, J., Chou, M.-D., and Arking, A.: 1984, ‘Effects of nontropical forest cover on climate’, J. Appl. Meteor. 23, 762–767.CrossRefADSGoogle Scholar
  45. Paillard, D. and Parrenin, F.: 2004, ‘The Antarctic ice sheet and the triggering of deglaciations’, Earth Planet. Sci. Lett. 227, 263–271.CrossRefADSGoogle Scholar
  46. Pälike, H., Shackleton, N. J., and Rohl, U.: 2001, ‘Astronomical forcing in Late Eocene marine sediments’, Earth Planet. Sci. Lett. 193, 589–602.CrossRefADSGoogle Scholar
  47. Parrenin, F. and Paillard, D.: 2003, ‘Amplitude and phase of glacial cycles from a conceptual model’, Earth Planet. Sci. Lett. 214, 243–250.CrossRefADSGoogle Scholar
  48. Parrenin, F., Remy, F., Ritz, C., Siegert, M. J., and Jouzel, J.: 2004, ‘New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core’, J. Geophys. Res. 109, doi:10.1029/2004JD004561.Google Scholar
  49. Pearson, P. N. and Palmer, M. R.: 2000, ‘Atmospheric carbon dioxide concentrations over the past 60 million years’, Nature 406, 695–699.CrossRefADSGoogle Scholar
  50. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I. Barnola, J.-M. Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 2001, ‘Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica’, Nature 399, 429–436.CrossRefADSGoogle Scholar
  51. Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanogr. 18, Art. No. 1083.Google Scholar
  52. Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.CrossRefGoogle Scholar
  53. Ruddiman, W. F.: 2005, ‘The early anthropogenic hypothesis a year later — An editorial reply’, Clim. Change 69, 427–434.CrossRefGoogle Scholar
  54. Ruddiman, W. F., Raymo, M., and McIntyre, A.: 1986, ‘Mutuyama 41, 000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets’, Earth Planet. Sci. Lett. 80, 117–129.CrossRefADSGoogle Scholar
  55. Ruddiman, W. F., Vavrus, S. J., and Kutzbach, J. E.: 2005, ‘Atest of the overdue-glaciation hypothesis’, Quat. Sci. Rev. 24, 1–10.CrossRefADSGoogle Scholar
  56. Sanchez Goñni, M. F., Loutre, M. F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Turon, J,-L., and Peypouquet, J.-P.: 2005, ‘Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122-110 ka): models-data comparison’, Earth Planet. Sci. Lett. 231, 111–130.CrossRefADSGoogle Scholar
  57. Shackleton, N. J.: 2000, ‘The 100,000-year ice-age cycle identified and found to lag temperature, Carbon Dioxide and orbital eccentricity’, Science 289, 1897–1902.CrossRefADSGoogle Scholar
  58. Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Ficher, H., Masson-Delmott, V., and Jouzel, J.: 2005, ‘Stable carbon cycle-climate relationship during the late Pleistocene”’, Science 310, 1313–1317, doi:10.1126/science.1120130.CrossRefADSGoogle Scholar
  59. Stephens, B. B. and Keeling, R. F.: 2000, ‘The influence of Antarctic sea-ice on glacial-interglacial CO2 variations’, Nature 404, 171–174.CrossRefADSGoogle Scholar
  60. Vettoretti, G. and Peltier, W. R.: 2003a, ‘Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias’, J. Climate 16, 889–911.CrossRefADSGoogle Scholar
  61. Vettoretti, G. and Peltier, W. R.: 2003b, ‘Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump’, J. Climate 16, 912–927.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Crucifix
    • 1
  • M. F. Loutre
    • 1
  • A. Berger
    • 1
  1. 1.Institut d’Astronomie et de Géophysique G. LemaîtreLouvain-la-NeuveBelgium

Personalised recommendations