Rapid Prototyping of Hydrogels to Guide Tissue Formation

  • Jordan S. Miller
  • Jennifer L. West


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luo Y, Shoichet MS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 2004;3(4):249–53.CrossRefGoogle Scholar
  2. 2.
    Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006;6(8):623–33.CrossRefGoogle Scholar
  3. 3.
    Drury JL, Boontheekul T, Boontheeku T, Mooney DJ. Cellular cross-linking of peptide modified hydrogels. J Biomech Eng 2005;127(2):220–28.CrossRefGoogle Scholar
  4. 4.
    Matsuda T, Moghaddam MJ, Miwa H, Sakurai K, Iida F. Photoinduced prevention of tissue adhesion. ASAIO J 1992;38(3):M154–7.CrossRefGoogle Scholar
  5. 5.
    Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 2001;22(6):619–26.CrossRefGoogle Scholar
  6. 6.
    Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, et al. Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 2006;9(1):8–16.CrossRefGoogle Scholar
  7. 7.
    Willcox MD, Harmis N, Cowell, Williams T, Holden. Bacterial interactions with contact lenses; effects of lens material, lens wear and microbial physiology. Biomaterials 2001;22(24):3235–47.Google Scholar
  8. 8.
    Flynn L, Dalton PD, Shoichet MS. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 2003;24(23):4265–72.CrossRefGoogle Scholar
  9. 9.
    Ratner BD, Hoffman AS, Whiffen JD. The thrombogenicity of radiation grafted polymers as measured by the vena cava ring test. J Bioeng 1978;2(3–4):313–23.Google Scholar
  10. 10.
    Cadée JA, de Groot CJ, Jiskoot W, den Otter W, Hennink WE. Release of recombinant human interleukin-2 from dextran-based hydrogels. J Control Release 2002;78(1–3):1–13.CrossRefGoogle Scholar
  11. 11.
    Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002;23(22):4325–32.CrossRefGoogle Scholar
  12. 12.
    Hynd MR, Frampton JP, Dowell-Mesfin N, Turner JN, Shain W. Directed cell growth on protein-functionalized hydrogel surfaces. J Neurosci Methods 2007;162(1–2):255–63.Google Scholar
  13. 13.
    Saraydin D, Karadağ E, Oztop HN, Güven O. Adsorption of bovine serum albumin onto acrylamide-maleic acid hydrogels. Biomaterials 1994;15(11):917–20.CrossRefGoogle Scholar
  14. 14.
    Nicodemus GD, Villanueva I, Bryant SJ. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. J Biomed Mater Res A 2007;Google Scholar
  15. 15.
    Hill-West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorbable hydrogel barriers. Obstet Gynecol 1994;83(1):59–64.Google Scholar
  16. 16.
    Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 1994;28(7):831–38.CrossRefGoogle Scholar
  17. 17.
    Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 2002;99(8):5133–38.CrossRefGoogle Scholar
  18. 18.
    Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294(5547):1684–88.CrossRefGoogle Scholar
  19. 19.
    Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices 2006;3(2):167–74.CrossRefGoogle Scholar
  20. 20.
    Harris LG, Patterson LM, Bacon C, Gwynn I, Richards RG. Assessment of the cytocompatibility of different coated titanium surfaces to fibroblasts and osteoblasts. J Biomed Mater Res A 2005;73(1):12–20.Google Scholar
  21. 21.
    Prokop A, Kozlov E, Nun Non S, Dikov MM, Sephel GC, et al. Towards retrievable vascularized bioartificial pancreas: induction and long-lasting stability of polymeric mesh implant vascularized with the help of acidic and basic fibroblast growth factors and hydrogel coating. Diabetes Technol Ther 2001;3(2):245–61.CrossRefGoogle Scholar
  22. 22.
    Spargo BJ, Rudolph AS, Rollwagen FM. Recruitment of tissue resident cells to hydrogel composites: in vivo response to implant materials. Biomaterials 1994;15(10):853–58.CrossRefGoogle Scholar
  23. 23.
    Eaglstein WH. Experiences with biosynthetic dressings. J Am Acad Dermatol 1985;12(2 Pt 2):434–40.Google Scholar
  24. 24.
    Leaper DJ, Brennan SS, Simpson RA, Foster ME. Experimental infection and hydrogel dressings. J Hosp Infect 1984;5 Suppl A:69–73.CrossRefGoogle Scholar
  25. 25.
    Geronemus RG, Robins P. The effect of two new dressings on epidermal wound healing. J Dermatol Surg Oncol 1982;8(10):850–52.Google Scholar
  26. 26.
    West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Efficacy of adhesion barriers. Resorbable hydrogel, oxidized regenerated cellulose and hyaluronic acid. J Reprod Med 1996;41(3):149–54.Google Scholar
  27. 27.
    Pathak CP, Sawhney AS, Hubbell JA. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J Am Chem Soc 1992;114:8311–2.Google Scholar
  28. 28.
    Koh WG, Itle LJ, Pishko MV. Molding of hydrogel microstructures to create multiphenotype cell microarrays. Anal Chem 2003;75(21):5783–89.CrossRefGoogle Scholar
  29. 29.
    Sheppard NFJr, Lesho MJ, McNally P, Francomacaro AS. Microfabricated conductimetric pH sensor Sensors and Actuators B: Chemical 1995;28(2):95–102.Google Scholar
  30. 30.
    Russell RJ, Pishko MV, Gefrides CC, McShane MJ, Coté GL. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel. Anal Chem 1999;71(15):3126–32.CrossRefGoogle Scholar
  31. 31.
    Sudhölter EJR, van der Wal PD, Skowronska-Ptasinska M, van den Berg A, Bergveld P, Reinhoudt DN. Modification of ISFETs by covalent anchoring of poly(hyroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface Analytica Chimica Acta 1990;230:59–65.Google Scholar
  32. 32.
    Kim DH, Kim P, Song I, Cha JM, Lee SH, et al. Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir 2006;22(12):5419–26.CrossRefGoogle Scholar
  33. 33.
    Sershen SR, Mensing GA, Ng M, Halas NJ, Beebe DJ, West JL. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Advanced Materials 2005;17(11):1366–68.CrossRefGoogle Scholar
  34. 34.
    Eddington DT, Beebe DJ. Flow control with hydrogels. Adv Drug Deliv Rev 2004;56(2):199–210.CrossRefGoogle Scholar
  35. 35.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50(1):27–46.CrossRefGoogle Scholar
  36. 36.
    Peppas NA, Wood KM, Blanchette JO. Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 2004;4(6):881–87.CrossRefGoogle Scholar
  37. 37.
    Serra L, Doménech J, Peppas NA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006;27(31):5440–51.Google Scholar
  38. 38.
    Hahn MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 2006;18(20):2679–84.CrossRefGoogle Scholar
  39. 39.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 2003;100(9):5413–18.CrossRefGoogle Scholar
  40. 40.
    Gombotz WR, Wang GH, Horbett TA, Hoffman AS. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 1991;25(12):1547–62.CrossRefGoogle Scholar
  41. 41.
    Sakarya A, Ilkgül O, Aydede H, Erhan Y, Içöz G, et al. Effect of polyethylene glycol 4000 on adhesion formation following thyroid surgery in rats. Indian J Med Res 2002;115:255–59.Google Scholar
  42. 42.
    Consigny PM, Barry JJ, Vitali NJ. Local delivery of an antiproliferative drug with use of hydrogel-coated angioplasty balloons. J Vasc Interv Radiol 1994;5(4):553–60.CrossRefGoogle Scholar
  43. 43.
    Park S, Bearinger JP, Lautenschlager EP, Castner DG, Healy KE. Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating. J Biomed Mater Res 2000;53(5):568–76.CrossRefGoogle Scholar
  44. 44.
    Torchiana DF. Polyethylene glycol based synthetic sealants: potential uses in cardiac surgery. J Card Surg 2003;18(6):504–6.CrossRefGoogle Scholar
  45. 45.
    Hu BH, Messersmith PB. Enzymatically cross-linked hydrogels and their adhesive strength to biosurfaces. Orthod Craniofac Res 2005;8(3):145–49.CrossRefGoogle Scholar
  46. 46.
    Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 2000;51(2):164–71.CrossRefGoogle Scholar
  47. 47.
    Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 2000;11(5):439–57.CrossRefGoogle Scholar
  48. 48.
    Bikram M, Fouletier-Dilling C, Hipp JA, Gannon F, Davis AR, et al. Endochondral Bone Formation from Hydrogel Carriers Loaded with BMP2-transduced Cells. Ann Biomed Eng 2007;35(5):796–07.CrossRefGoogle Scholar
  49. 49.
    Gobin AS, West JL. Cell migration through defined, synthetic ECM analogs. FASEB J 2002;16(7):751–53.Google Scholar
  50. 50.
    Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 2002;60(1):86–93.CrossRefGoogle Scholar
  51. 51.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55.CrossRefGoogle Scholar
  52. 52.
    Itle LJ, Koh WG, Pishko MV. Hepatocyte Viability and Protein Expression within Hydrogel Microstructures. Biotechnol Prog 2005;21(3):926–32.CrossRefGoogle Scholar
  53. 53.
    Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 2006;21(3):790–801.CrossRefGoogle Scholar
  54. 54.
    Bryant SJ, Bender RJ, Durand KL, Anseth KS. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng 2004;86(7):747–55.CrossRefGoogle Scholar
  55. 55.
    Cooper JA, Li WJ, Bailey LO, Hudson SD, Lin-Gibson S, et al. Encapsulated chondrocyte response in a pulsatile flow bioreactor. Acta Biomater 2007;3(1):13–21.CrossRefGoogle Scholar
  56. 56.
    Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 2001;22(22):3045–51.CrossRefGoogle Scholar
  57. 57.
    Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 2006;27(28):4881–93.CrossRefGoogle Scholar
  58. 58.
    Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 2005;8(3):150–61.CrossRefGoogle Scholar
  59. 59.
    Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 2007;119(1):112–20.CrossRefGoogle Scholar
  60. 60.
    Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005;26(30):5991–98.CrossRefGoogle Scholar
  61. 61.
    Patel PN, Gobin AS, West JL, Patrick CW. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 2005;11(9–10):1498–505.CrossRefGoogle Scholar
  62. 62.
    Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 2006;27(10):2265–74.CrossRefGoogle Scholar
  63. 63.
    Lai YC, Quinn ET. The effects of initiator and diluent on the photopolymerization of 2-hydroxyethyl methacrylate and on properties of hydrogels obtained. In: Scranton AB, Bowman CN, Peiffer RW, editors. Photopolymerization: fundamentals and applications Washington, DC: American Chemical Society, 1997; pp. 35, 50.Google Scholar
  64. 64.
    Gobin AS, West JL. Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mater Res A 2003;67(1):255–9.CrossRefGoogle Scholar
  65. 65.
    Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 2001;22(5):439–44.CrossRefGoogle Scholar
  66. 66.
    Sawhney AS, Pathak CP, Hubbell JA. Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility. Biomaterials 1993;14(13):1008–16.CrossRefGoogle Scholar
  67. 67.
    Cruise GM, Hegre OD, Scharp DS, Hubbell JA. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 1998;57(6):655–65.CrossRefGoogle Scholar
  68. 68.
    An Y, Hubbell JA. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J Control Release 2000;64(1–3):205–15.Google Scholar
  69. 69.
    Kizilel S, Pérez-Luna VH, Teymour F. Photopolymerization of poly(ethylene glycol) diacrylate on eosin-functionalized surfaces. Langmuir 2004;20(20):8652–58.CrossRefGoogle Scholar
  70. 70.
    Kizilel S, Sawardecker E, Teymour F, Pérez-Luna VH. Sequential formation of covalently bonded hydrogel multilayers through surface initiated photopolymerization. Biomaterials 2006;27(8):1209–15.CrossRefGoogle Scholar
  71. 71.
    Horbett TA. Protein adsorption on biomaterials. Adv Chem Ser 1982;199:233–44.CrossRefGoogle Scholar
  72. 72.
    Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984;309(5963):30–3.CrossRefGoogle Scholar
  73. 73.
    Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell 1986;44(4):517–8.CrossRefGoogle Scholar
  74. 74.
    Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (NY) 1991;9(6):568–72.CrossRefGoogle Scholar
  75. 75.
    Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 1991;114(5):1089–100.CrossRefGoogle Scholar
  76. 76.
    Tashiro K, Sephel GC, Weeks B, Sasaki M, Martin GR, et al. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 1989;264(27):16174–82.Google Scholar
  77. 77.
    DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 2005;26(16):3227–34.CrossRefGoogle Scholar
  78. 78.
    Lee J, Shanbhag S, Kotov NA. Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures J MATER CHEM 2006;16(35):3558–64.CrossRefGoogle Scholar
  79. 79.
    Liu Y, Wang S, Krouse J, Kotov NA, Eghtedari M, et al. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res A 2007;Google Scholar
  80. 80.
    Marshall AJ, Ratner BD. Quantitative characterization of sphere-templated porous biomaterials AICHE J 2005;51(4):1221–32.CrossRefGoogle Scholar
  81. 81.
    Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties ADV MATER 2005;17(4):399–+.CrossRefGoogle Scholar
  82. 82.
    Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001;7(1):23–33.CrossRefGoogle Scholar
  83. 83.
    Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir 2001;17(18):5440–47.CrossRefGoogle Scholar
  84. 84.
    Koh WG, Revzin A, Pishko MV. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 2002;18(7):2459–62.CrossRefGoogle Scholar
  85. 85.
    Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices 2002;4(4):257–66.CrossRefGoogle Scholar
  86. 86.
    Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 2004;88(3):399–415.CrossRefGoogle Scholar
  87. 87.
    Yu T, Ober CK. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules 2003;4(5):1126–31.CrossRefGoogle Scholar
  88. 88.
    Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 2005;27(12):2519–24.CrossRefGoogle Scholar
  89. 89.
    Itoga K, Yamato M, Kobayashi J, Kikuchi A, Okano T. Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials 2004;25(11):2047–53.CrossRefGoogle Scholar
  90. 90.
    Itoga K, Yamato M, Kobayashi J, Kikuchi A, Okano T. Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics. J Biomed Mater Res A 2004;69(3):391–97.CrossRefGoogle Scholar
  91. 91.
    Itoga K, Kobayashi J, Yamato M, Kikuchi A, Okano T. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 2006;27(15):3005–9.CrossRefGoogle Scholar
  92. 92.
    Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 2006;77(2):396–05.Google Scholar
  93. 93.
    Hahn MS, Miller JS, West JL. Laser scanning lithography for surface micropatterning on hydrogels. Advanced Materials 2005;17(24):2939–42.CrossRefGoogle Scholar
  94. 94.
    Nuttelman CR, Tripodi MC, Anseth KS. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 2005;24(3):208–18.CrossRefGoogle Scholar
  95. 95.
    Mapili G, Lu Y, Chen S, Roy K. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater 2005;75(2):414–24.Google Scholar
  96. 96.
    Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 2006;34(9):1429–41.CrossRefGoogle Scholar
  97. 97.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999;398:51–4.CrossRefGoogle Scholar
  98. 98.
    Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990;248(4951):73–6.CrossRefGoogle Scholar
  99. 99.
    Helmchen F, Denk W. New developments in multiphoton microscopy. Curr Opin Neurobiol 2002;12(5):593–601.CrossRefGoogle Scholar
  100. 100.
    Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005;2(12):932–40.CrossRefGoogle Scholar
  101. 101.
    Olson CE, Previte MJ, Fourkas JT. Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers. Nat Mater 2002;1(4):225–28.CrossRefGoogle Scholar
  102. 102.
    Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 2003;21(11):1369–77.CrossRefGoogle Scholar
  103. 103.
    Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen. Annalen der Physik 1931;401(3):273–94.CrossRefGoogle Scholar
  104. 104.
    Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 1996;93(20):10763–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jordan S. Miller
    • 1
  • Jennifer L. West
  1. 1.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations