Advertisement

Adaptable Parallel Components for Grid Programming

  • Jan Dünnweber
  • Sergei Gorlatch
  • Marco Aldinucci
  • Sonia Campa
  • Marco Danelutto

Abstract

We suggest that parallel software components used for grid computing should be adaptable to application-specific requirements, instead of developing new components from scratch for each particular application. As an example, we take a parallel farm component which is “embarrassingly parallel”, i. e., free of dependencies, and adapt it to the wavefront processing pattern with dependencies that impact its behavior. We describe our approach in the context of Higher-Order Components (HOCs), with the Java-based system Lithium as our implementation framework. The adaptation process relies on HOCs’ mobile code parameters that are shipped over the network of the grid. We describe our implementation of the proposed component adaptation method and report first experimental results for a particular grid application — the alignment of DNA sequence pairs, a popular, time-critical problem in computational molecular biology.

Keywords

Grid Components Adaptable Code Wavefront Parallelism Java Web Services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating parallel programs from the wavefront design pattern. In 7th Workshop on High-Level Parallel Programming Models. IEEE Computer Society Press, 2002.Google Scholar
  2. [2]
    F. Baude, D. Caramel, and M. Morel. From distributed objects to hierarchical grid components. In International Symposium on Distributed Objects and Applications (DOA). Springer LNCS, Catania, Sicily, 2003.Google Scholar
  3. [3]
    M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel Computation. Pitman, 1989.Google Scholar
  4. [4]
    M. Danelutto and P. Teti. Lithium: A structured parallel programming enviroment in Java. In Proceedings of Computational Science-ICCS, number 2330 in Lecture Notes in Computer Science, pages 844–853. Springer-Verlag, Apr. 2002.Google Scholar
  5. [5]
    J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order components. In IEEE International Conference on Services Computing, Shanghai, China, pages 288–294. IEEE Computer Society Press, Sept. 2004.Google Scholar
  6. [6]
    Globus Alliance. http://www.globus.org, 1996.Google Scholar
  7. [7]
    S. Gorlatch and J. Dünnweber. From Grid Middleware to Grid Applications: Bridging the Gap with HOCs. In Future Generation Grids. Springer Verlag, 2005.Google Scholar
  8. [8]
    J. Kleinjung, N. Douglas, and J. Heringa. Parallelized multiple alignment. In Bioinformatics 18. Oxford University Press, 2002.Google Scholar
  9. [9]
    L. Lamport. The parallel execution of do loops. In Commun. ACM, volume 17,2, pages 83–93. ACM Press, 1974.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Lengauer. Loop parallelization in the polytope model. In International Conference on Concurrency Theory, pages 398–416, 1993.Google Scholar
  11. [11]
    V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. In Soviet Physics Dokl. Volume 10, pages 707–710, 1966.MathSciNetGoogle Scholar
  12. [12]
    M. Aldinucci, S. Campa et al. The implementation of ASSIST, an environment for parallel and distributed programming. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of the Euro-Par 2003, number 2790 in lncs, pages 712–721. Springer, Aug. 2003.Google Scholar
  13. [13]
    M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morgenstern. Dialign p: Fast pair-wise and multiple sequence alignment using parallel processors. In BMC Bioinformatics 5. BioMed Central, 2004.Google Scholar
  14. [14]
    C. Szyperski. Component software: Beyond object-oriented programming. Addison Wesley, 1998.Google Scholar
  15. [15]
    Unicore Forum e.V. UNICORE-Grid, http://www.unicore.org, 1997.Google Scholar
  16. [16]
    M. Wolfe. Loop skewing: the wavefront method revisited. In Journal of Parallel Programming, Volume 15, pages 279–293, 1986.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jan Dünnweber
    • 1
  • Sergei Gorlatch
    • 1
  • Marco Aldinucci
    • 2
  • Sonia Campa
    • 2
  • Marco Danelutto
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany
  2. 2.Department of Computer ScienceUniversità di PisaPisaItaly

Personalised recommendations