MEMS Materials and Processes Handbook pp 137-191

Part of the MEMS Reference Shelf book series (MEMSRS, volume 1)

Additive Processes for Metals

Chapter

Abstract

Metals are vital building blocks for MEMS. Pure metals and metal alloys are employed in microsystem design to achieve a wide array of functionality. Common examples include electrical conductors, mechanical structures, magnetic elements, thermal conductors, optical reflectors, and more. In this chapter, additive processes for metals are discussed in the context of their application in MEMS. Particular attention is paid to MEMS-centric processing technologies, where thick metal layers are often required. Basic guidelines are given for material selection, and fabrication recipes are provided as a starting point for process development.

References

  1. 1.
    S.A. Campbell: Fabrication Engineering at the Micro- and Nanoscale, Ch. 12 (Oxford University Press, New York, NY, 2008)Google Scholar
  2. 2.
    S.P. Murarka: Chapter 9. Metallization in VLSI Technology (2nd Edition), S.M. Sze (Ed.), McGraw-Hill, New York, NY, 375–421 (1988)Google Scholar
  3. 3.
    R.J. Gnaedinger: Some calculations of the thickness distribution of films deposited from large area sputtering sources, J. Vac. Sci. Technol. 6, 355–362 (1969)CrossRefGoogle Scholar
  4. 4.
    I.A. Blech, H.A. Vander Plas: Step coverage simulation and measurements in a DC planar magnetron sputtering systems, J. Appl. Phys. 54, 3489–3496 (1983)CrossRefGoogle Scholar
  5. 5.
    Y.H. Park, F.T. Zold, J.F. Smith: Influences of DC bias on aluminum films prepared with a high rate magnetron sputtering cathode, Thin Solid Films 129, 309–314 (1985)CrossRefGoogle Scholar
  6. 6.
    S. Kobayashi, M. Sakata, K. Abe, T. Kamei, O. Kasahara, H. Ohgishi, K. Nakata: High rate deposition of MoSi2 films by selective co-sputtering, Thin Solid Films 118, 129–138 (1984)CrossRefGoogle Scholar
  7. 7.
    D.H. Weon, J.I. Kim, S. Mohamadi: Design of high-Q 3-D integrated inductors for high frequency applications, Analog Integr. Circuits Signal Process. 50, 89–93 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Ataka, A. Omodaka, N. Takeshima, H. Fujita: Fabrication and operation of polyimide bimorph actuators for a ciliary motion system, J. Microelectromech. Syst. 2, 146–150 (1993)CrossRefGoogle Scholar
  9. 9.
    M. Schlesinger, M. Paunovic: Modern Electroplating (Wiley, New York, NY, 2000)Google Scholar
  10. 10.
    D.R. Crow: Principles and Applications of Electrochemistry (Stanley Thornes (Publishers) Ltd., Cheltenham, 1998)Google Scholar
  11. 11.
    M. Paunovic, M. Schlesinger: Fundamentals of Electrochemical Deposition (Wiley, New York, NY, 1998)Google Scholar
  12. 12.
    D. Landolt: Electrochemical and materials science aspects of alloy deposition, Electrochim. Acta 39, 1075–1090 (1994)CrossRefGoogle Scholar
  13. 13.
    H. Löwe, W. Ehrfeld, J. Schiewe: Micro-Electroforming of Miniaturized Devices for Chemical Applications, In J.W. Schultze et al. (Eds.): Electrochemical Microsystem Technologies, pp. 245–268 (Taylor & Francis, New York, NY, 2002)CrossRefGoogle Scholar
  14. 14.
    T. Fritz: Charakterisierung galvanisch abgeschiedener Nickel- und Nickelwolframschichten für mikrotechnische Anwendungen, Dissertation D82 RWTH Aachen (2002)Google Scholar
  15. 15.
    A. Gemmler, W. Keller, H. Richter, H. Ruess: Mikrostrukturen- Prozesswissen erlaubt höchste Präzision (English: Micro devices – process models for high precision), Metalloberfläche 47, 461–468 (1993)Google Scholar
  16. 16.
    J.C. Puippe: Theory and Practice of Pulse Plating (American Electroplaters and Surface Finishers Society, Orlando, FL, 1986)Google Scholar
  17. 17.
    R.K. Sharma, A.C. Rastog, K. Jain, G. Singh: Microstructural investigations on CdTe thin films electrodeposited using high current pulses, Physica B 366, 80–88 (2005)CrossRefGoogle Scholar
  18. 18.
    W. Wang, F.Y. Hou, H. Wang, H.T. Guo: Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition, Scr. Mater. 53, 613–618 (2005)CrossRefGoogle Scholar
  19. 19.
    M.V. Rastei, S. Colis, J.P. Bucher: Growth control of homogeneous pulsed electrodeposited Co thin films on n-doped Si(111) substrates, Chem. Phys. Lett. 417, 217–221 (2005)CrossRefGoogle Scholar
  20. 20.
    F. Lallemand, L. Ricq, E. Deschaseau, L. De Vettor, P. Bercot: Electrodeposition of cobalt-iron alloys in pulsed current from electrolytes containing organic additives, Surf. Coat. Technol. 197, 10–17 (2005)CrossRefGoogle Scholar
  21. 21.
    E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process), Microelectron. Eng. 35, 35–56 (1986)CrossRefGoogle Scholar
  22. 22.
    S. Harsch, W. Ehrfeld, A. Maner: Untersuchungen zur Hrestellung von Mikrostrukturen großer Strukturhöhe durch Galvanoformung in Nickelsulfamatelektrolyten, Reserach Centre Karlsruhe, Germany, Report No. 4455 (1988)Google Scholar
  23. 23.
    W. Stark, M. Saumer, B. Matthis: Nickelsulfamat-Elektrolyte für die Mikrogalvanoformung, Galvanotechnik 86, 1107–111 (1996)Google Scholar
  24. 24.
    M. Guttmann, J. Schulz, V. Saile: Lithographic Fabrication of Mold Inserts, In H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds.): Advanced Micro and Nanosystems, Vol. 3: Microengineering of Metals and Ceramics, Ch. 8, pp. 187–219 (Wiley-VCH, Weinheim, 2005)CrossRefGoogle Scholar
  25. 25.
    T. Fritz, M. Griepentrog, W. Mokwa, U. Schnakenberg: Determination of Young’s modulus of electroplated nickel, Electrochim. Acta 48, 3029–3035 (2003)CrossRefGoogle Scholar
  26. 26.
    W. Bacher, K. Bade, K. Leyendecker, W. Menz, W. Stark, A. Thommes: Electrodeposition of Microstructures, In N. Masuko, T. Osaka, Y. Ito (Eds.): Electrochemical Technology, Ch. 9, pp. 159–189 (Gordon and Breach, Kodansha, 1996)Google Scholar
  27. 27.
    R. Ruprecht, W. Bacher: Mikrogalvanoformung für die Weltraumforschung – Herstellen von Infrarotfiltern (English: Micro-galvanoforming for space research – production of infra-red filters), Metalloberfläche 45, 531–534 (1991)Google Scholar
  28. 28.
    P.M. Vereecken, R.A. Binstead, H. Deligianni, P.C. Andricacos: The chemistry of additives in damascene copper plating, IBM J. Res. Dev. 49, 1–18 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Osaka, Y. Okinaka, J. Sasano, M. Kato: Development of new electrolytic and electroless gold plating processes for electronics applications, Sci. Technol. Adv. Mater. 7, 425–437 (2006)CrossRefGoogle Scholar
  30. 30.
    H. Honma, K. Hagiwara: Fabrication of gold bumps using gold sulfite plating, J. Electrochem. Soc. 142, 81–87 (1995)CrossRefGoogle Scholar
  31. 31.
    J.J. Kelly, N. Yang, T. Headley, J. Hachmann: Experimental study of the microstructure and stress of electroplated gold for microsystem applications, J. Electrochem. Soc. 150, C445–C450 (2003)CrossRefGoogle Scholar
  32. 32.
    N. Dambrowsky, J. Schulz: Gold plating in microsystem technology – challenges by new applications (original: Goldgalvanik in der Mikrosystemtechnik – Herausforderungen durch neue Anwendungen), Scientific Report FZKA 7308, Forschungszentrum Karlsruhe GmbH, Karlsruhe (2007)Google Scholar
  33. 33.
    M.J. Liew, S. Roy, K. Scott: Development of a non-toxic electrolyte for soft gold electrodeposition: An overview of work at University of Newcastle upon Tyre, Green Chem. 5, 376–381 (2003)CrossRefGoogle Scholar
  34. 34.
    Y. Okinaka, M. Hoshino: Some recent topics in gold plating for electronics applications, Gold Bull. 31, 3–13 (1998)CrossRefGoogle Scholar
  35. 35.
    A. Maner, W. Ehrfeld, R. Schwarz: Electroforming of absorber patterns of gold on masks for X-ray lithography, Galvanotechnik 79, 1101–1106 (1988)Google Scholar
  36. 36.
    A. Brenner: Electrodeposition of Alloys: Principles and Practice, Volumes I and II (Academic, New York, NY, 1963)Google Scholar
  37. 37.
    D. Landolt, A. Marlot: Microstructure and composition of pulse-plated metals and alloys, Surf. Coat. Technol. 169–170, 8–13 (2003)CrossRefGoogle Scholar
  38. 38.
    P.C. Andricacos, L.T. Romankiw: Magnetically Soft Materials in Data Storage: Their Properties and Electrochemistry, In H. Gerischer, C.W. Tobias (Eds.): Advances in Electrochemical Science and Engineering, pp. 230–321 (VCH, Weinheim, 1994)Google Scholar
  39. 39.
    T. Budde, M. Föhse, B. Majjer, H. Lüthje, G. Bräuer, H.H. Gatzen: An investigation on technologies to fabricate magnetic microcomponents for miniaturized actuator systems, Microsyst. Technol. 10, 237–240 (2004)CrossRefGoogle Scholar
  40. 40.
    E.I. Cooper, C. Bonhôte, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu: Recent developments in high-moment electroplated materials for recording heads, IBM J. Res. Dev. 49, 103–126 (2005)CrossRefGoogle Scholar
  41. 41.
    M. Föhse: Entwurf und Fertigung eines linearen elektromagnetischen Mikromotors nach dem Synchronprinzip, Dissertation, Universität Hannover (2005)Google Scholar
  42. 42.
    U. Kirsch, R. Degen: Hochpräzise und wirtschaftlich – Die Galvanoformung als hochpräzises Verfahren zur Abformung von Mikrozahnrädern, Metalloberfläche 61, 33–35 (2007)Google Scholar
  43. 43.
    T. Kohlmeier, V. Seidemann, S. Büttgenbach, H.H. Gatzen: An investigation on technologies to fabricate microcoils for miniaturized actuator systems, Microsyst. Technol. 10, 175–185 (2004)CrossRefGoogle Scholar
  44. 44.
    S. Roy, A. Connell, A. Ludwig, N. Wang, T. O’Donnell, M. Brunet, P. McCloskey, C. Ómathúna, A. Barman, R.J. Hicken: Pulse reverse plating for integrated magnetics on Si, J. Magn. Magn. Mater. 290–291, 1524–1527 (2005)CrossRefGoogle Scholar
  45. 45.
    Y. Sverdlow, Y. Rosenberg, Y.I. Rozenberg, R. Zmood, R. Erlich, S. Natan, Y. Shacham-Diamand: The electrodeposition of cobalt-nickel-iron high aspect ratio thick film structures for magnetic MEMS applications, Microelectron. Eng. 76, 258–265 (2004)CrossRefGoogle Scholar
  46. 46.
    F.E. Rasmussen, J.T. Ravnkilde, P.T. Tang, O. Hansen, S. Bouwstra: Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications, Sens. Act. A Phys. 92, 242–248 (2001)CrossRefGoogle Scholar
  47. 47.
    P.T. Tang: Pulse reversal plating of nickel and nickel alloys for MEMS. Proceedings SUR/FIN, Nashville, June 25–28, pp. 224–232 (2001)Google Scholar
  48. 48.
    J.O. Dukovic: Current Distribution and Shape Change in Electrodeposition of Thin Films for Microelectronic Fabrication, In H. Gerischer, C.W. Tobias (Eds.) Advances in Electrochemical Science and Engineering, pp. 117–157 (Verlag Chemie, Weinheim, 1994)Google Scholar
  49. 49.
    L.T. Romankiw, D.A. Herman, Proceedings of the Fourth International Symposium on Magnetic Materials, Processes and Devices, pp. 626–636 (The Electrochemical Society, Pennington, NJ, 1995)Google Scholar
  50. 50.
    A. Thommes, W. Stark, W. Bacher: Die galvanische Abscheidung von Eisen-Nickel in LIGA-Mikrostrukturen. Scientific Reports, Research Centre Karlsruhe FZKA 5586 (1995)Google Scholar
  51. 51.
    S. Abel: Charakterisierung von Materialien zur Fertigung elektromagnetischer Mikroaktoren in LIGA Technik. Dissertation, University of Kaiserslautern, Germany (1996)Google Scholar
  52. 52.
    S.D. Leith, S. Ramli, D.T. Schwartz: Characterization of NixFe1–x (0.10<x<0.95) electrodeposition from a family of sulfamate-chloride electrolytes, J. Electrochem. Soc. 146, 1421–1435 (1999)CrossRefGoogle Scholar
  53. 53.
    U. Kirsch: Elektrochemische Abscheidung von spannungsarmen Nickel-Eisen-Legierungschichten und ihre Eigenschaften für Bauteile der Mikrosystemtechnik, Dissertation, University of Freiburg (Klaus Bielefeld Verlag, Friedland, 2000)Google Scholar
  54. 54.
    D.L. Grimmet, M. Schwartz, K. Nobe: Pulsed electrodeposition of iron-nickel alloys, J. Electrochem. Soc. 134, 3414–3418 (1990)CrossRefGoogle Scholar
  55. 55.
    C. Müller, M. Sarret, T. Andreu: ZnMn alloys obtained using pulse, reverse and superimposed current modulations, Electrochim. Acta 48, 2397–2404 (2003)CrossRefGoogle Scholar
  56. 56.
    J.Y. Fei, G.D. Wilcox: Electrodeposition of Zn–Co alloys with pulse containing reverse current, Electrochim. Acta 50, 2693–2698 (2005)CrossRefGoogle Scholar
  57. 57.
    F. Giro, K. Bedner, C. Dhum, J.E. Hoffmann, S.P. Heussler, J. Linke, U. Kirsch, M. Moser, M. Saumer: Pulsed electrodeposition of high aspect-ratio NiFe assemblies and its influence on spatial alloy composition, Microsyst. Technol. 14, 1111–1115 (2008)CrossRefGoogle Scholar
  58. 58.
    A. Brenner, G.E. Riddell: Nickel plating on steel by chemical reduction, United States Bureau of Standards, J. Res. 37, 31–34 (1946)Google Scholar
  59. 59.
    J.G. Jin, S.K Lee, Y.H Kim: Adhesion improvement of electroless plated Ni layer by ultrasonic agitation during zincating process, Thin Solid Films 466, 272–278 (2004)CrossRefGoogle Scholar
  60. 60.
    F. Touyeras, J.Y. Hihn, X. Bourgoin, B. Jacques, L. Hallez, V. Branger: Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating, Ultrasonics Sonochem. 12, 13–19 (2004)CrossRefGoogle Scholar
  61. 61.
    F.A. Lowenheim (Ed.): Modern Electroplating, 3rd edn, Ch. 31 (Wiley, New York, NY, 1974)Google Scholar
  62. 62.
    A. Brenner, G. Riddell: Deposition of nickel and cobalt by chemical reduction, United States Bureau of Standards, J. Res. 39, 385–395 (1947)Google Scholar
  63. 63.
    A. Brenner: Electroless plating comes of age, Metal Finish. 52, 61–68 (1954)Google Scholar
  64. 64.
    N. Feldstein, T.S. Lancsek: Selective electroless plating by selective deactivation, RCA Rev. 31, 439–442 (1970)Google Scholar
  65. 65.
    T. Berzins: Alloy and Composite Metal Plate, U.S. Patent 3,045,334 (1962)Google Scholar
  66. 66.
    R.M. Hoke: Chemical Plating of Metal-Boron Alloys, U.S. Patent 2,990,296 (1961)Google Scholar
  67. 67.
    G.O. Mallory, J.B. Hajdu (Eds.): Electroless Plating Fundamentals and Applications, American Electroplaters and Surface Finishers Society (Noyes Publications/William Andrew Publishing, LLC, New York, NY, 1990)Google Scholar
  68. 68.
    A. Hung, K.-M. Chen: Mechanism of hypophosphite-reduced electroless copper, J. Electrochem. Soc. 136, 72–75 (1989)CrossRefGoogle Scholar
  69. 69.
    P. Fintschenko, E.C. Groshart: Electroless copper plating, Metal Finish. 68, 85–87 (1970)Google Scholar
  70. 70.
    A.E. Cahill: Surface catalyzed reduction of copper, Proc. Am. Electroplaters’ Soc. 44, 130 (1957)Google Scholar
  71. 71.
    O.B. Dutkewych, Electroless Copper Plating, U.S. Patent 3,475,186 (1969)Google Scholar
  72. 72.
    Y. Okinaka, In G.O. Mallory, J.B. Hajdu (Eds.), Electroless Plating of Gold and Gold Alloys, Ch. 11, American Electroplaters and Surface Finishers Society (Noyer Publications/William Andrew Publishing, New York, NY, 1990)Google Scholar
  73. 73.
    J.F. McCormack: Autocatalytic Gold Plating Solutions, U.S. Patent 3,589,916 (1971)Google Scholar
  74. 74.
    S. Mehdizadeh, J.O. Dukovic, P.C. Andricacos, L.T. Romankiw: The influence of lithographic patterning on current distribution: A model for microfabrication by electrodeposition, J. Electrochem. Soc. 139, 78–91 (1992)CrossRefGoogle Scholar
  75. 75.
    J.K. Luo, D.P. Chu, A.J. Feewitt, S.M. Spearing, N.A. Fleck, W.I Milne: Uniformity control of Ni thin film microstructures deposited by through mask plating, J. Electrochem. Soc. 152, C36–C41 (2005)CrossRefGoogle Scholar
  76. 76.
    K. Leyendecker: Untersuchungen zum Stofftransport bei der Galvanoformung von LIGA-Mikrostrukturen, Dissertation, Universität Karlsruhe (1995)Google Scholar
  77. 77.
    U. Gengenbach, I. Sieber, U. Wallrabe: Design for LIGA and Safe Manufacturing, In O. Brand, G. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds.): Advanced Micro & Nanosystems, Vol. 7: LIGA and Its Applications, pp. 143–188 (Wiley-VCH, Weinheim, 2009)Google Scholar
  78. 78.
    V. Saile, U. Wallrabe, O. Tabata: LIGA and Its Applications (Wiley-VCH, Weinheim, 2009)Google Scholar
  79. 79.
    W. Menz, J. Mohr, O. Paul: Microsystem Technology, Ch. 7: The LIGA Process, p. 289 (Wiley VCH, Weinheim, 2001)Google Scholar
  80. 80.
    Y.J. Kim, M.G. Allen: Surface micromachined solenoid inductors for high frequency applications, IEEE Trans. Compon. Packaging Manuf. Technol. C 21, 26–33 (1998)CrossRefGoogle Scholar
  81. 81.
    J.Y. Park, M.G. Allen: High Q spiral-type microinductors on silicon substrates, IEEE Trans. Magn. 135, 3544–3546 (1999)CrossRefGoogle Scholar
  82. 82.
    J.-B. Yoon, C.H. Han, E. Yoon, C.K. Kim: Monolithic high-Q overhang inductors fabricated on silicon and glass substrates. Technical Digest of IEEE International Electron Devices Meeting, Dec. 5–8, 1999, pp. 753–756 (1999)Google Scholar
  83. 83.
    B. Morgan, X. Hua, T. Iguchi, T. Tomioka, G.S. Oehrlein, R. Ghodssi: Substrate interconnect technologies for 3-D MEMS packaging, Microelectron. Eng. 81, 106–116 (2005)CrossRefGoogle Scholar
  84. 84.
    Y.K. Yoon, M.G. Allen: Embedded conductor technology for micromachined RF elements, J. Micromech. Microeng. 15, 1317–1326 (2005)CrossRefGoogle Scholar
  85. 85.
    P. Gwynne: Back to the future: Copper comes of age, IBM Res. 35, 17–21 (1997)Google Scholar
  86. 86.
    F. Cros, K. Kim, M.G. Allen: A single-mask process for micromachined magnetic devices. Proceedings of the Solid State Sensor and Actuator Workshop (Hilton Head Island, SC), pp. 138–141 (1997)Google Scholar
  87. 87.
    J.A. Thornton, D.W. Hoffman: Stress-related effect in thin films, Thin Solid Films 171, 5–31 (1989)CrossRefGoogle Scholar
  88. 88.
    M.K. Ghosh, K.L. Mittal (Eds.): Polyimides: Fundamentals and Applications, Ch. 20–21 (Marcel Dekker, New York, NY, 1996)Google Scholar
  89. 89.
    F.K. LeGoues, B.D. Silverman, P.S. Ho: The microstructure of metal-polyimide interfaces, J. Vac. Sci. Technol. A 6, 2200–2204 (1988)CrossRefGoogle Scholar
  90. 90.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  91. 91.
    G. Jia, M.J. Madou: MEMS Fabrication, In M. Gad-el-Hak (Ed.): The MEMS Handbook, 2nd edn, Vol. 2: MEMS Design and Fabrication, pp. 3–114 (CRC Press/Taylor and Francis, Boca Raton, FL, 2006)Google Scholar
  92. 92.
    K.L. Mittal (Ed.): Adhesion Aspects of Thin Films, Vol. 2, p. 125 (VSP, Utrecht, 2005)Google Scholar
  93. 93.
    C.K. Hu, M.B. Small, F. Kaufman, D.J. Pearson, In S.S. Wong, S. Furuka (Eds.): Tungsten and Other Advanced Metals for VLSI/ULSI Applications, p. 369 (Materials Research Society, Pittsburgh, PA, 1989)Google Scholar
  94. 94.
    D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 90th edn (CRC Press/Taylor and Francis, Boca Raton, FL, 2008). Internet Version available: http://www.hbcpnetbase.com/ Google Scholar
  95. 95.
    G.T.A. Kovacs: Micromachined Transducers Sourcebook, p. 561 (McGraw Hill, Boston, MA, 2006).Google Scholar
  96. 96.
    J.R. Davis (Ed.): Base-Metal Selection, In Metals Handbook Desk Edition, 2nd edn (ASM International, Materials Park, OH, 1998)Google Scholar
  97. 97.
    S.K. Prasad: Advanced Wirebond Interconnection Technology (Kluwer, Bangalore, 2004)Google Scholar
  98. 98.
    G.G. Harman: Wire Bonding in Microelectronics, 2nd edn (McGraw Hill, New York, NY, 1997)Google Scholar
  99. 99.
    S.D. Cramer, B.S. Covino (Eds.): ASM Handbook, Vol. 13B: Corrosion: Materials (ASM International, 2005)Google Scholar
  100. 100.
    D. Jiles: Introduction to Magnetism and Magnetic Materials, 2nd edn, Ch. 2, 4 (CRC Press/Taylor and Francis, Boca Raton, FL, 1998)Google Scholar
  101. 101.
    T.W. Swaddle: Inorganic Chemistry: An Industrial and Environmental Perspective, p. 104 (Academic, San Diego, CA, 1997)Google Scholar
  102. 102.
    T. Yi, C.J. Kim: Measurement of mechanical properties of MEMS materials, Measurement Sci. Technol. 10, 706–717 (1999)CrossRefGoogle Scholar
  103. 103.
    W.N. Sharpe: Mechanical Properties of MEMS Materials, In M. Gad-el-Hak (Ed.): The MEMS Handbook, 2nd edn, Vol. 1: MEMS Introduction and Fundamentals, Ch. 3 (CRC Press/Taylor & Francis, Boca Raton, FL, 2006)Google Scholar
  104. 104.
    V.T. Srikar, S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech. 43, 238–247 (2006)CrossRefGoogle Scholar
  105. 105.
    M. Winter: WebElements: the periodic table on the web (2009). Available at http://www.webelements.com/ (Accessed July 1, 2010)
  106. 106.
    D.P. Arnold, N. Wang: Permanent magnets for MEMS. J. Microelectromech. Syst. 18, 1255–1266 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David P. Arnold
    • 1
  • Monika Saumer
    • 2
  • Yong-Kyu Yoon
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Microsystems TechnologyUniversity of Applied SciencesKaiserslauternGermany
  3. 3.Department of Electrical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations