Additive Processes for Semiconductors and Dielectric Materials

  • Christian A. Zorman
  • Robert C. Roberts
  • Li Chen
Chapter
Part of the MEMS Reference Shelf book series (MEMSRS, volume 1)

Abstract

This chapter presents an overview of the key methods and process recipes commonly employed in the deposition of semiconductor and dielectric thin films used in the fabrication of microelectromechanical systems (MEMS). These methods include chemical vapor deposition, epitaxy, physical vapor deposition, atomic layer deposition, and spin-on techniques. The materials featured in this chapter include silicon and its oxide, nitride, and carbide derivatives, silicon–germanium, diamond and diamondlike carbon, III-V semiconductors, aluminum oxide, and other notable semiconductor and dielectric materials used as structural, sacrificial, and passivation layers. The process recipes presented in this chapter largely come from publications that report not only processing details, but also key material properties of importance to MEMS that result from the reported processes. Whenever possible, the references included in this chapter are papers that are readily available via commonly used electronic databases such as IEEE Xplore™ and ScienceDirect™ so as to aid the reader in gathering more detailed information than can be practically presented herein. Furthermore, the processes selected for inclusion in this chapter were, for the most part, successfully used in the fabrication of MEMS structures or components, thus verifying their utility in MEMS technology. For select materials, case studies are included to provide process-related details that cannot easily be tabulated but are nonetheless of critical importance to successful usage of the process.

References

  1. 1.
    J.D. Plummer, M.D. Deal, P.B. Griffin: Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, New York, NY, 2000)Google Scholar
  2. 2.
    S. Wolf, R.N. Tauber: Silicon Processing for the VSLI Era (Lattice Press, Sunset Beach, CA, 1987)Google Scholar
  3. 3.
    M. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 1997)Google Scholar
  4. 4.
    Y. Song, S. Dhar, L.C. Feldman, G. Chung, J.R. Williams: Modified deal grove model for the thermal oxidation of silicon carbide, J. Appl. Phys. 95, 4953–4957 (2004)Google Scholar
  5. 5.
    J. Leconte, F. Iker, S. Jorez, N. Andre, J. Proost, T. Pardoen, D. Flandre, J.P. Raskin: Thin films stress extraction using micromachined structures and wafer curvature measurements, Microelectron. Eng. 76, 219–226 (2004)Google Scholar
  6. 6.
    J. Yang, J. Gaspar, O. Paul: Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms, J. Microelectromech. Syst. 17, 1120–1134 (2008)Google Scholar
  7. 7.
    T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari: Nanopore technology for biomedical applications, Biomed. Microdev. 2, 11–49 (1999)Google Scholar
  8. 8.
    J.P. Conde, P. Alpuim, M. Boucinha, J. Gaspar, V. Chu: Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: Application to devices and thin-film microelectromechanical systems, Thin Solid Films 395, 105–111 (2001)Google Scholar
  9. 9.
    P. Alpuim, V. Chu, J.P. Conde: Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition, J. Vac. Sci. Technol. A 19, 2328–2333 (2001)Google Scholar
  10. 10.
    S.B. Patil, T. Adrega, V. Chu, J.P. Conde: Thin film silicon MEMS microresonators fabricated by hot-wire chemical vapor deposition, J. Micromech. Microeng. 16, 2730–2735 (2006)Google Scholar
  11. 11.
    M. Boucinha, P. Brogueira, V. Chu, J.P. Conde: Amorphous silicon air-gap resonators on large-area substrates, Appl. Phys. Lett. 77, 907–909 (2000)Google Scholar
  12. 12.
    M.S. Mason, C.M. Chen, H.A. Atwater: Hot-wire chemical vapor deposition for epitaxial silicon growth on large-grained polycrystalline silicon templates, Thin Solid Films 430, 54–57 (2003)Google Scholar
  13. 13.
    T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed. (Kluwer, Boston, MA, 1998)Google Scholar
  14. 14.
    J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications, Mater. Res. Symp. Proc. 605, 31–36 (2000)Google Scholar
  15. 15.
    L. Cao, T.S. Kin, S.C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Act. 80: 273–279 (2000)Google Scholar
  16. 16.
    D. Maier-Schneider, A. Kprll, S.B. Holm, E. Obermeier: Elastic properties and microstructure of LPCVD polysilicon films, J. Micromech. Microeng. 6, 436–446 (1996)Google Scholar
  17. 17.
    H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer: Fracture toughness of polysilicon MEMS devices, Sens. Act. A82, 274–280 (2000)Google Scholar
  18. 18.
    J. Carter, A. Cowen, B. Hardy, R. Mahadevan, M. Stonefield, S. Wilcenski: The PolyMUMPS Design Handbook (MEMSCAP Inc., Durham, NC, 2005, available at http://www.memscap.com/mumps/documents/PolyMUMPs.DR.v11.pdf). (Accessed 5 January 2009)Google Scholar
  19. 19.
    S. Jayaraman, R.L Edwards, K.J. Hemke: Relating mechanical testing and microstructural features of polysilicon thin films, J. Mater. Res. 14, 688–697 (1999)Google Scholar
  20. 20.
    C.L. Muhlstein, S.B. Brown, R.O. Ritchie: High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sens. Act. A94, 177–188 (2001)Google Scholar
  21. 21.
    W.N. Sharpe Jr, B. Yuan, R. Vaidyanathan, R.L. Edwards: Measurements of young’s modulus, poisson’s ratio, and tensile strength of polysilicon, Proceedings of the 10th Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, pp. 424–429 (1997)Google Scholar
  22. 22.
    R.K. Gupta, P.M. Osterberg, S.D. Senturia: Material property measurements of micromechanical polysilicon beams, Proc. SPIE 2880, 39 (1996)Google Scholar
  23. 23.
    Sandia National Laboratories: “SUMMiT V Five Level Surface Micromachining Technology Design Manual,” Science and Technology Department, Microelectronics Development Laboratory, drt@sandia.gov. Version 3.1a. (2008)Google Scholar
  24. 24.
    L. Chen, J. Miao, L. Guo, R. Lin: Control of stress in highly doped polysilicon multi-layer diaphragm structure, Surf. Coating Technol. 141, 96–102 (2001)Google Scholar
  25. 25.
    J. Yang, H. Kahn, A.Q. He, S.M. Phillips, A.H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9, 485–494 (2000)Google Scholar
  26. 26.
    Y.B. Gianchandani, M. Shinn, K. Najafi: Impact of high-thermal budget anneals on polysilicon as a micromechanical material, J. Microelectromech. Syst. 7, 102–105 (1998)Google Scholar
  27. 27.
    P.J. French: Polysilicon: A versatile material for microsystems, Sens. Act. A99, 3–12 (2002)MathSciNetGoogle Scholar
  28. 28.
    D. Poenar, R. Wolffenbuttel: Optical properties of thin-film silicon-compatible materials, Appl. Opt. 36, 5122–5128 (1997)Google Scholar
  29. 29.
    J.G.M. Mulder, P. Eppenga, M. Hendriks, J.E. Tong: An industrial LPCVD process for in situ phosphorus-doped polysilicon, J. Electrochem. Soc. 137, 273 (1990)Google Scholar
  30. 30.
    H. Guckel, D.W. Burns, C.C.G. Visser, H.A.C. Tilmans, D. Deroo: Fine-grained polysilicon films with built-in tensile strain, IEEE Trans. Electron Dev. 35, 800–801 (1988)Google Scholar
  31. 31.
    L. Elbrecht, R. Catanescu, J. Zacheja, J. Binder: Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping, Sens. Act. A61, 374–378 (1997)Google Scholar
  32. 32.
    G.M. Dougherty, A.P Pisano, T.D. Sands: Processing and morphology of permeable polycrystalline silicon thin films, J. Mater. Res. 17, 2235–2242 (2002)Google Scholar
  33. 33.
    G.M. Dougherty, T.D. Sands, A.P. Pisano: Microfabrication using one-step LPCVD porous polysilicon films, J. Microelectromech. Syst. 12, 418–424 (2003)Google Scholar
  34. 34.
    L.L. Lin, R.T. Howe, A.P. Pisano: A passive, in situ micro strain gauge. Proceedings of the 1993 IEEE Micro Electro Mechanical Systems Conference, Ft. Lauderdale, FL, pp. 210–206 (1993)Google Scholar
  35. 35.
    M. Madou: Fundamentals of Microfabrication, 2nd ed., p. 274 (CRC Press, Boca Raton, FL, 2002)Google Scholar
  36. 36.
    D. Maier-Schneider, J. Maibach, E. Obermeier, D. Schneider: Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing, J. Micromech. Microeng. 5, 121–124 (1995)Google Scholar
  37. 37.
    X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)Google Scholar
  38. 38.
    T.A. Lober, J. Huang, M.A. Schmidt, S.D. Senturia: Characterization of the Mechanisms Producing Bending Moments in Polysilicon Micro-Cantilever Beams by Interferometric Deflection Measurements, Technical Digest – Solid-State Sensor Actuator Workshop, Hilton Head, SC, pp. 92–95 (1988)Google Scholar
  39. 39.
    O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi: Mechanical property measurements of thin films using load-deflection of composite rectangular membrane. Proceedings of Micro Electro Mechanical Systems, Salt Lake City, UT, pp. 152–156 (1989)Google Scholar
  40. 40.
    H. Guckel, D.W. Burns: Planar processed polysilicon sealed cavities for pressure transducer arrays, Proc. Electron Dev. Meet 30, 223–225 (1984)Google Scholar
  41. 41.
    R.T. Howe, R.S. Muller: Polycrystalline silicon micromechanical beams, J. Electrochem. Soc. 130, 1420 (1983)Google Scholar
  42. 42.
    M. Biebl, G.T. Mulhern, R.T. Howe: In situ phosphorus-doped polysilicon for integrated MEMS, technical digest. 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 198–201 (1995)Google Scholar
  43. 43.
    M. Biebl, M.G. Brandl, R.T. Howe: Young’s modulus of in situ phosphorus-doped polysilicon, technical digest. 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 80–83 (1995)Google Scholar
  44. 44.
    S. Bouwstra, E.L. de Weerd, M.C. Elwenspoek: In situ phosphorus-doped polysilicon for excitation and detection in micromechanical resonators, Sens. Act. A24, 227–235 (1990)Google Scholar
  45. 45.
    R.C. Anderson, R.S. Muller, C.W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)Google Scholar
  46. 46.
    G. Fresquet, C. Azzaro, J.P. Couderc: Analysis and modeling of in situ boron-doped polysilicon deposition by LPCVD, J. Electrochem. Soc. 142, 538 (1995)Google Scholar
  47. 47.
    M. Biebl, H. von Philipsborn: fracture strength of doped and undoped polysilicon, technical digest. 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp.72–75 (1995)Google Scholar
  48. 48.
    H. Guckel, D.W. Burns, H.A.C. Tilmans, D.W. DeRoo, C.R. Rutigliano: Mechanical properties of fine grained polysilicon-the repeatability issue. Technical Digest, Solid-State Sensor Actuator Workshop, Hilton Head, SC, pp. 96–99 (1988)Google Scholar
  49. 49.
    J. Koskinen, J.E. Steinwall, R. Soave, H.H. Johnson: Microtensile testing of free-standing polysilicon fibers of various grain sizes, J. Micromech. Microeng. 3, 13–17 (1993)Google Scholar
  50. 50.
    J.A. Walker, K.J. Gabriel, M. Mehregany: Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions, J. Electron. Mater. 20, 665–670 (1991)Google Scholar
  51. 51.
    Y.C. Tai, R.S. Muller: Measurement of young’s modulus on microfabricated structures using a surface profiler. Proceedings of Micro Electro Mechanical Systems, Napa Valley, CA, pp. 147–152 (1990)Google Scholar
  52. 52.
    L.S. Fan, Y.C. Tai, R.S. Muller: Integrated movable micromechanical structures for sensors and actuators, IEEE Trans. Electron Dev. 35, 724–730 (1988)Google Scholar
  53. 53.
    F. Ericson, S. Greek, J. Soderkvist, J. Schweitz: High sensitive internal film stress measurement by an improved micromachined indicator structure, technical digest. 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 84–87 (1995)Google Scholar
  54. 54.
    M.A. Benitez, L. Fonseca, J. Esteve, M.S. Benrakkad, J.R. Morante, J. Samitier, J.A. Schweitz: Stress-profile characterization and test-structure analysis of single and double ion-implanted LPCVD polycrystalline silicon, Sens. Act. A 54, 718–723 (1996)Google Scholar
  55. 55.
    H. Guckel, T. Randazzo, D.W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)Google Scholar
  56. 56.
    R.T. Howe, R.S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)Google Scholar
  57. 57.
    B. Semmanche, P. Kleimann, M. LeBerre, M. Lemiti, D. Barbier, P. Pinard: Rapid thermal processing of piezoresistive polycrystalline silicon films: an innovative technology for low cost pressure sensor fabrication, Sens. Act. A 46–47, 76–81 (1995)Google Scholar
  58. 58.
    T.J. Kang, H.Y. Lee, Y.H. Kim: Reduction of sheet resistance and low-thermal budget relaxation of stress gradients in polysilicon microcantilever beams using mickel-silicides, J. Microelectromech. Syst. 16, 279–288 (2007)Google Scholar
  59. 59.
    S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York, NY, 1983)Google Scholar
  60. 60.
    K.S. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges, Sens. Act. A 33, 249–256 (1992)Google Scholar
  61. 61.
    L.S. Fan, R.S. Muller: As-deposited, low-strain LPCVD polysilicon, technical digest. IEEE Solid State Sensors and Actuators Workshop, Hilton Head, SC, pp. 55–58 (1988)Google Scholar
  62. 62.
    R. He, C.J. Kim: On-chip hermetic packaging enabled by post-deposition electrochemical etching of polysilicon. Proceedings of the 18th International Conference on Microelectromechanical Systems, IEEE, Piscataway, NJ, pp. 544–547 (2005)Google Scholar
  63. 63.
    W.C. Tang, T.C.H. Nguyen, R.T. Howe: Laterally driven polysilicon resonant microstructures. Proceedings of Microelectromechanical Systems, Salt Lake City, UT, pp. 53–59 (1989)Google Scholar
  64. 64.
    W.A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 14, 1064–1081 (1977)Google Scholar
  65. 65.
    D. Poenar, P.J. French, R. Mallee, P.M. Sarro, R.F. Wolffenbuttel: PSG layers for surface micromachining, Sens. Act. A 41–42, 304–309 (1994)Google Scholar
  66. 66.
    Y. Shioya, M. Mamoru: Comparison of phosphosilicate glass films deposited by three different chemical vapor deposition methods, J. Electrochem. Soc. 133, 1943–1950 (1986)Google Scholar
  67. 67.
    R.M. Levin, A.C. Adams: Low pressure deposition of phosphosilicate glass films, J. Electrochem. Soc. 129, 1588–1592 (1982)Google Scholar
  68. 68.
    J. Buhler, F.P. Steiner, H. Baltes: Silicon dioxide sacrificial layer etching in surface micromachining, J. Micromech. Microeng. 7, R1–R13 (1997)Google Scholar
  69. 69.
    J. Yang, O. Paul: Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes, Sens. Act. A 97–98, 520–526 (2002)Google Scholar
  70. 70.
    B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Act. A51, 71–75 (1995)Google Scholar
  71. 71.
    M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer x-ray mask, J. Vac. Sci. Technol. 21, 1017–1021 (1982)Google Scholar
  72. 72.
    J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser: LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design, J. Vac. Sci. Technol. A 14, 2879–2892 (1996)Google Scholar
  73. 73.
    P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid: Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia, J. Vac. Sci. Technol. A16, 2003–2007 (1998)Google Scholar
  74. 74.
    C. Mastrangelo, Y.-C. Tai, R. Muller: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films, Sens. Act. A21–A23, 856–860 (1990)Google Scholar
  75. 75.
    P.P. Tsai, I.-C. Chen, C.J. Ho: Ultralow power carbon monoxide microsensor by micromachining techniques, Sens Act. B76, 380–387 (2001)Google Scholar
  76. 76.
    P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Act. A58, 149–157 (1997)Google Scholar
  77. 77.
    A. Kaushik, H. Kahn, A.H. Heuer: Wafer-level mechanical characterization of silicon nitride MEMS, J. Microelectromech. Syst. 14, 359–367 (2005)Google Scholar
  78. 78.
    L.S. Fan, R.T. Howe, R.S. Muller: Fracture toughness of brittle thin films, Sens. Act. A21–A23, 872–874 (1990)Google Scholar
  79. 79.
    X. Zhang, T.Y. Zhang, T. Zohar: Measurement of residual stresses in thin films using micro-rotating-structures, Thin Solid Films 335, 97–105 (1998)Google Scholar
  80. 80.
    J.M. Olson: Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part 1: preliminary LPCVD experiments, Mater. Sci. Semicond. Process. 5, 51–60 (2002)Google Scholar
  81. 81.
    P. Pan, W. Berry: The composition and physical properties of LPCVD silicon nitride deposited with different NH3/SiH2Cl2 gas ratios, J. Electrochem. Soc. 132, 3001–3005 (1985)Google Scholar
  82. 82.
    S. Hong, T.P. Weihs, J.C. Bravman, W.D. Nix: Measuring stiffness and residual stresses of silicon nitride thin films, J. Electron. Mater. 19, 903–909 (1990)Google Scholar
  83. 83.
    B.C.S. Chou, J.S. Shie, C.N. Chen: Fabrication of low stress dielectric thin film for microsensor applications, IEEE Electron Dev. Lett. 18, 599–601 (1997)Google Scholar
  84. 84.
    E.I. Bromley, J.N. Randall, D.C. Flanders, R.W. Mountain: A technique for the determination of stress in thin films, J. Vac. Sci. Technol. B 1, 1364–1366 (1983)Google Scholar
  85. 85.
    D. Resnik, U. Aljancic, D. Vrtacnik, M. Mozek, S. Amon: Mechanical stress in thin film microstructures on silicon substrate, Vacuum 80, 236–240 (2005)Google Scholar
  86. 86.
    T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao, L.Q. Chen: Microbridge testing of silicon nitride thin films deposited on silicon wafers, Acta Mater. 48, 2843–2857 (2000)Google Scholar
  87. 87.
    Y. Ren, D.C.C. Lam: Characterization of elastic behaviors of silicon nitride films with varying thicknesses, Mater. Sci. Eng. A 467, 93–96 (2007)Google Scholar
  88. 88.
    B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)Google Scholar
  89. 89.
    A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson: Post-CMOS integration of germanium microstructures. Proceedings of the 12th International Conference on Microelectromechanical Systems, IEEE, Piscataway, NJ, pp. 630–637 (1999)Google Scholar
  90. 90.
    A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe: Post-CMOS modular integration of poly-sige microstructures using poly-ge sacrificial layers. Technical Digest, Solid State Sensor and Actuator Workshop, Hilton Head, SC, pp. 18–21 (2000)Google Scholar
  91. 91.
    S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)Google Scholar
  92. 92.
    S. Sedky, A. Witvrouw, K. Baert: Poly SiGe, a promising material for MEMS monolithic integration with the driving electronics, Sens. Act. A97–98, 503–511 (2002)Google Scholar
  93. 93.
    C.W. Low, T.J.K. Liu, R.T. Howe: Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications, J. Microelectromech. Syst. 16, 68–77 (2007)Google Scholar
  94. 94.
    S. Sedky, A. Bayoumy, A. Alaa, A. Nagy, A. Witvrouw: Optimal conditions for micromachining Si1–xGex at 210°C, J. Microelectromech. Syst. 16, 581–588 (2007)Google Scholar
  95. 95.
    J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.J. King, R.T. Howe: High aspect ratio polysilicon-germanium microstructures. Proceedings of the 10th International Conference on Solid State Sensors and Actuators, Sendai, Japan, pp. 328–334 (1999)Google Scholar
  96. 96.
    P. Van Gerwen, T. Slater, J.B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Act. A 53, 325–329 (1996)Google Scholar
  97. 97.
    A. Witvrouw, H.A.C. Tilmans, I. De Wolf: Materials issues in the processing, the operation and the reliability of MEMS, Microelectron. Eng. 76, 245–257 (2004)Google Scholar
  98. 98.
    S.A. Bhave, B.L. Bircumshaw, W.Z. Low, Y.S. Kim: Poly-SiGe: A high-Q structural material for integrated Rf MEMS. Technical Digest, Solid-State Sensors, Actuator and Microsystems Workshop, Hilton Head, SC, pp. 34–37 (2002)Google Scholar
  99. 99.
    S. Sedky, R.T. Howe, T.-J. King: Pulsed-laser annealing, a low-thermal-budget technique for eliminating stress gradient in poly-SiGe MEMS structures, J. Microelectromech. Syst. 13, 669–675 (2004)Google Scholar
  100. 100.
    M.-A. Eyoum, T.-J. King: Low-resistance silicon-germanium contact technology for modular integration of MEMS with electronics, J. Electrochem. Soc. 151, J21–J25 (2004)Google Scholar
  101. 101.
    Y.C. Jeon, T.J. King, R.T. Howe: Properties of phosphorus-doped poly-SiGe films for microelectromechanical system applications, J. Electrochem. Soc. 150, H1 (2003)Google Scholar
  102. 102.
    A.E. Franke, J.M. Heck, T.J. King, R.T. Howe: Polycrystalline silicon-germanium films for integrated microsystems, J. Microelectromech. Syst. 12, 160–171 (2003)Google Scholar
  103. 103.
    T.-J. King, J.P. McVittie, K.C. Saraswat: Electrical properties of heavily doped polycrystalline silicon-germanium films, IEEE Trans. Electron Dev. 41, 228–232 (1994)Google Scholar
  104. 104.
    R.S. Okojie, A.A. Ned, A.D. Kurtz: Operation of a 6H-SiC pressure sensor at 500°C, Sens. Act. A66, 200–204 (1998)Google Scholar
  105. 105.
    G. Beheim, C.S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6 (2000)Google Scholar
  106. 106.
    M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu: Silicon carbide MEMS for harsh environments, Proc. IEEE 8, 1594–1610 (1998)Google Scholar
  107. 107.
    C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Act. A97–98, 410–415 (2002)Google Scholar
  108. 108.
    D. Gao, R.T. Howe, R. Maboudian: High-selectivity etching of polycrystalline 3C-SiC films using HBR-based transformer coupled plasma, Appl. Phys. Lett. 82, 1742–1744 (2004)Google Scholar
  109. 109.
    C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)Google Scholar
  110. 110.
    L. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)Google Scholar
  111. 111.
    C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)Google Scholar
  112. 112.
    C.H. Wu, C.A. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355–356, 179–183 (1999)Google Scholar
  113. 113.
    X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)Google Scholar
  114. 114.
    D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)Google Scholar
  115. 115.
    C.S. Roper, R.T Howe, R. Maboudian: Stress control of polycrystalline 3C-SiC films in a large-scale LPCVD reactor using 1,3-disilabutane and dichlorosilane as precursors, J. Micromech. Microeng. 16, 2736–2739 (2006)Google Scholar
  116. 116.
    X.-A. Fu, J.L. Dunning, C.A. Zorman, M. Mehregany: Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications, Sens. Act. A 119, 169–176 (2005)Google Scholar
  117. 117.
    Y. Yamaguchi, H. Nagasawa, T. Shoki, N. Armaka, H. Mitsui: Properties of heteroepitaxial 3C-SiC films grown by LPCVD, Sens. Act. A54, 695–699 (1996)Google Scholar
  118. 118.
    H. Nagasawa, Y. Yamaguchi: Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply, Thin Solid Films 225, 230–234 (1993)Google Scholar
  119. 119.
    C.R. Stoldt, M.C. Fritz, C. Carraro, R. Maboudian: Micromechanical properties of silicon carbide thin films deposited using single source chemical vapor deposition, Appl. Phys. Lett. 79, 347–349 (2001)Google Scholar
  120. 120.
    J. Zhang, C. Carraro, R.T. Howe, R. Maboudian: Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments, Surf. Coatings Technol. 201, 8893–8898 (2007)Google Scholar
  121. 121.
    D. Gao, C. Carraro, V. Radmilovic, R.T. Howe, R. Maboudian: Fracture of polycrystalline 3C-SiC films in microelectromechanical systems, J. Microelectromech. Syst. 13, 972–976 (2004)Google Scholar
  122. 122.
    E. Hurtos, J. Rodriguez-Viejo: Residual stress and texture in poly-SiC films grown by low-pressure organometallic chemical-vapor deposition, J. Appl. Phys. 87, 1748–1758 (2000)Google Scholar
  123. 123.
    J. Chen, J. Scofield, A.J. Steckl: Formation of SiC SOI structures by direct growth on insulating substrates, J. Electrochem. Soc. 147, 3845–3849 (2000)Google Scholar
  124. 124.
    K. Murooka, I. Higashikawa, Y. Gomei: Improvement of the Young’s modulus of SiC film by low pressure chemical vapor deposition with B2H6 gas, Appl. Phys. Lett. 69, 37–39 (1996)Google Scholar
  125. 125.
    G. Sun, J. Ning, X. Liu, Y. Zhao, J. Li, L. Wang, W. Zhao, L. Wang: Heavily doped polycrystalline 3C-SiC growth on SiO2/Si (100) substrates for resonator applications, Mater. Sci. Forum 556–557, 179–182 (2007)Google Scholar
  126. 126.
    X. Fu, J.L. Dunning, C.A. Zorman, M. Mehregany: Measurement of residual stress and elastic modulus of polycrystalline 3C-SiC films deposited by low-pressure chemical vapor deposition, Thin Solid Films 492, 195–202 (2005)Google Scholar
  127. 127.
    S. Nagappa, M. Zupan, C.A. Zorman: Mechanical characterization of chemical-vapor-deposited polycrystalline 3C silicon carbide thin films, Scr. Mater. 59, 995–998 (2008)Google Scholar
  128. 128.
    J. Trevino, X. Fu, M. Mehregany, C. Zorman: Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications. Proceedings of the 18th International Conference on Micro Electro Mechanical Systems, Miami, FL, pp. 451–454 (2005)Google Scholar
  129. 129.
    V. Hatty, H. Kahn, J. Trevino, C.A. Zorman, M. Mehregany, R. Ballarini, A.H. Heuer: Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films, J. Appl. Phys. 99, 013517 (2006)Google Scholar
  130. 130.
    L. Cheng, M. Pan, J. Scofield, A.J. Steckl: Growth and doping of SiC thin films on low-stress, amorphous Si3N4/Si substrates for robust microelectromechanical systems applications, J. Electron. Mater. 31, 361–365 (2002)Google Scholar
  131. 131.
    W. Zhou, J. Yang, G. Sun, X. Liu, F. Yang, J. Li: Fracture properties of silicon carbide thin films characterized by bulge test of long membranes. Proceedings of the 3rd International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, pp. 557–560 (2008)Google Scholar
  132. 132.
    E. Mastropaolo, R. Cheung, A. Henry, E. Janzén: Fabrication of beam resonators from hot-wall chemical vapour deposited SiC, Microelectron. Eng. 86, 1194–1196 (2009)Google Scholar
  133. 133.
    S. Noh, X. Fu, L. Chen, M. Mehregany: A study of electrical properties and microstructure of nitrogen-doped poly-SiC films deposited by LPCVD, Sens. Act. A 136, 613–617 (2007)Google Scholar
  134. 134.
    M.B.J. Wijesundara, C.R. Stoldt, C. Carraro, R.T. Howe, R. Maboudian: Nitrogen doping of polycrystalline 3C–SiC films grown by single-source chemical vapor deposition, Thin Solid Films 419, 69–75 (2002)Google Scholar
  135. 135.
    M.B.J. Wijesundara, D. Gao, C. Carraro, R.T. Howe, R. Maboudian: Nitrogen doping of polycrystalline 3C-SiC films grown using 1,3-disilabutane in a conventional LPCVD reactor, J. Crystal Growth 259, 18–25 (2003)Google Scholar
  136. 136.
    J. Zhang, R.T. Howe, R. Maboudian: Control of strain gradient in doped polycrystalline silicon carbide films through tailored doping, J. Micromech. Microeng. 16, L1–L5 (2006)Google Scholar
  137. 137.
    C.S. Roper, V. Radmilovic, R.T. Howe, R. Maboudian: Characterization of polycrystalline 3C-SiC films deposited from the precursors 1,3-disilabutane and dichlorosilane, J. Appl. Phys. 103, 084907 (2008)Google Scholar
  138. 138.
    C.S. Roper, V. Radmilovic, R.T. Howe, R. Maboudian: Effects of annealing on residual stress and strain gradient of doped polycrystalline SiC thin films, Electrochem. Solid State Lett. 11, D35–D37 (2008)Google Scholar
  139. 139.
    H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, C.A Zorman, M. Mehegany: Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon, Appl. Phys. Lett. 89, 073111 (2006)Google Scholar
  140. 140.
    T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)Google Scholar
  141. 141.
    D.K. Reinhard, T.A. Grotjohn, M. Becker, M.K. Yaran, T. Schuelke, J. Asmussen: Fabrication and properties of ultranano, nano, and microcrystalline diamond membranes and sheets, J. Vac. Sci. Technol. B 22, 2811 (2004)Google Scholar
  142. 142.
    X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari: Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature, Appl. Phys. Lett. 92, 131908 (2008)Google Scholar
  143. 143.
    H. Li, B.W. Sheldon, A. Kothari, Z. Ban, B.L. Walden: Stress evolution in nanocrystalline diamond films produced by chemical vapor deposition, J. Appl. Phys. 100, 094309 (2006)Google Scholar
  144. 144.
    D.R. Wur, J.L. Davidson, W.P. Kang, D.L. Kinser: Polycrystalline diamond pressure sensor, J. Microelectromech. Syst. 4, 34–41 (1995)Google Scholar
  145. 145.
    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1961 (2001)Google Scholar
  146. 146.
    H.D. Espinosa, B.C. Prorok, B. Peng, K.H. Kim, M. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, D.C. Mancini: Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices, Exp. Mech. 4, 256–268 (2003)Google Scholar
  147. 147.
    H.D. Espinosa, B. Peng, B.C. Prorok, N. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, D.C. Mancini: Fracture strength of ultrananocrystalline diamond thin films – identification of Weibull parameters, J. Appl. Phys. 94, 6076 (2003)Google Scholar
  148. 148.
    F.J. Hernández Guillén, K. Janischowsky, W. Ebert, E. Kohn: Nanocrystalline diamond films for mechanical applications, Phys. Status Solidi A 201, 2553–2557 (2004)Google Scholar
  149. 149.
    V.P. Adiga, A.V. Sumant, S. Suresh, C. Gudeman, O. Auciello, J.A. Carlisle, R.W. Carpick: Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators, Phys. Rev. B 79, 245403 (2009)Google Scholar
  150. 150.
    S. Sahli, D.M. Aslam: Measurement of the pressure response of boron-doped CVD diamond piezoresistors as a function of resistivity and electric field, Sens. Act. A 69, 27–32 (1998)Google Scholar
  151. 151.
    S. Sahli S, D.M. Aslam: Ultra-high sensitivity intra-grain poly-diamond piezoresistors, Sens. Act. A 71, 193–197 (1998)Google Scholar
  152. 152.
    H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Act. 73, 24–29 (1999)Google Scholar
  153. 153.
    M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems. Proceedings of the 8th International Conference on Solid State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 222–224 (1995)Google Scholar
  154. 154.
    R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)Google Scholar
  155. 155.
    Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang: Diamond surface micromachining technology, Diam. Relat. Mater. 8, 1834–1837 (1999)Google Scholar
  156. 156.
    X.D. Wang, G.D. Hong, J. Zhang, B.L. Lin, H.Q. Gong, W.Y. Wang: Precise patterning of diamond films for MEMS applications, J. Mater. Process. Technol. 127, 230–233 (2002)Google Scholar
  157. 157.
    J. Wang, J.E. Butler, D.S.Y. Hsu, C.T.C. Nguyen: CVD polycrystalline diamond high-Q micromechanical resonators. Proceedings of the 15th International Conference on Microelectromechanical Systems, Las Vegas, NV, pp. 657–660 (2002)Google Scholar
  158. 158.
    J. Wang, J.E. Butler, T. Feygelson, C.T.C. Nguyen: 1.51 GHz nanocrystalline diamond micromechanical disk resonator with material mismatched isolating support. Proceedings of the 17th International Conference on Microelectromechanical Systems, Maastricht, the Netherlands, pp. 641–644 (2004)Google Scholar
  159. 159.
    N. Sepulveda, D. Aslam, J.P. Sullivan: Polycrystalline diamond MEMS resonator technology for sensor applications, Diam. Relat. Mater. 15, 398–403 (2006)Google Scholar
  160. 160.
    O. Auciello, J. Birrell, J.A. Carlisle, J. Geri, X. Xiao, B. Peng, H.D. Espinosa: Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin film, J. Phys. Condens. Matter 16, R539–R552 (2004)Google Scholar
  161. 161.
    X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)Google Scholar
  162. 162.
    W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russel, L.M. Smith, J. Hamers: DNA-modified nanocrystalline diamond thin films as stable, biologically active substrates, Nat. Mater. 1, 253–257 (2002)Google Scholar
  163. 163.
    J.J. Bellante, H. Kahn, R. Ballarini, C.A. Zorman, M. Mehregany, A.H. Heuer: Fracture toughness of polycrystalline silicon carbide thin films, Appl. Phys. Lett. 86, 071920 (2005)Google Scholar
  164. 164.
    G.-S. Chung, K.-B. Han: H2 carrier gas dependence of Young’s modulus and hardness of chemical vapor deposited polycrystalline 3C-SiC thin films, Microelectron. J. 39, 1413–1415 (2008)Google Scholar
  165. 165.
    S. Roy, C. Zorman, M. Mehregany, R. DeAnna, C. Deeb: The mechanical properties of polycrystalline 3C-SiC films grown on polysilicon substrates by atmospheric pressure chemical-vapor deposition, J. Appl. Phys. 99, 044108 (2006)Google Scholar
  166. 166.
    J. Gaspar, T. Adrega, V. Chu, J.P. Conde: Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C. Proceedings of the 18th International Conference on Microelectromechanical Systems, Miami, FL, pp. 125–128 (2005)Google Scholar
  167. 167.
    S.B. Patil, V. Chu, J.P. Conde: Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer, J. Vac. Sci. Technol. B25, 455–458 (2007)Google Scholar
  168. 168.
    S. Chang, S. Sivoththaman: A tunable RF MEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process, IEEE Electron Dev. Lett. 27, 905–907 (2006)Google Scholar
  169. 169.
    S. Chang, S. Sivoththaman: Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer, J. Micromech. Microeng. 16, 1307–1313 (2006)Google Scholar
  170. 170.
    P. Alpuim, V. Chu, J.P. Conde: Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition, J. Appl. Phys. 86, 3812–3821 (1999)Google Scholar
  171. 171.
    S.B. Patil, V. Chu, J.P. Conde: Comparison of the mechanical and resonance properties of thin film silicon MEMS fabricated at 110 and 250°C, J. Micromech. Microeng. 19, 025018 (2009)Google Scholar
  172. 172.
    C.-K. Chung, M.-Q. Tsai, P.-H. Tsai, C. Lee: Fabrication and characterization of amorphous Si films by PECVD for MEMS, J. Micromech. Microeng. 15, 136–142 (2005)Google Scholar
  173. 173.
    S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood: Micromechanical structures in amorphous silicon. Technical Digest, International Conference on Solid State Sensors and Actuators, San Francisco, CA, pp. 751–754 (1991)Google Scholar
  174. 174.
    A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, H. Hillmer: Stress investigation of PECVD dielectric layers for advanced optical MEMS, J. Micromech. Microeng. 14, 317–323 (2004)Google Scholar
  175. 175.
    X. Zhang, K.-S. Chen, R. Ghodssi, A.A. Ayon, S.M. Spearing: Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films, Sens. Act. A 91, 373–380 (2001)Google Scholar
  176. 176.
    B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone: Poisson’s ratio of low-temperature PECVD silicon nitride thin films, J. Microelectromech. Syst. 16, 622–627 (2007)Google Scholar
  177. 177.
    M.-C. Jo, S.-K. Park, S.-J. Park: A study on resistance of PECVD silicon nitride thin film to thermal stress-induced cracking, Appl. Surf. Sci. 140, 12–18 (1999)Google Scholar
  178. 178.
    C. Iliescu, F.E.H. Tay, J. Wei: Low stress PECVD-SiNx layers at high deposition rates using high power and high frequency for MEMS applications, J. Micromech. Microeng. 16, 869–874 (2006)Google Scholar
  179. 179.
    M. Martyniuk, J. Antoszewski, C.A. Musca, J.M. Dell, L. Faraone: Dielectric thin films for MEMS-based optical sensors, Microelectron. Reliab. 47, 733–738 (2007)Google Scholar
  180. 180.
    H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawne, Y. Liud, X.Z. Hud, J.M. Dell, L. Faraone: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films, Mater. Sci. Eng. A 435–436, 453–459 (2006)Google Scholar
  181. 181.
    E. Cianci, A. Coppa, V. Foglietti: Young’s modulus and residual stress of RF PECVD silicon nitride for MEMS free-standing membrane, Microelectron. Eng. 84, 1296–1299 (2007)Google Scholar
  182. 182.
    W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang, Y. Yu: Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films, Thin Solid Films 517, 1989–1994 (2009)Google Scholar
  183. 183.
    T. Kramer, O. Paul: Surface micromachined ring test structures to determine mechanical properties of compressive thin films, Sens. Act. A 92, 292–298 (2001)Google Scholar
  184. 184.
    M. Gromova, A. Mehta, K. Baert, A. Witvrouw: Characterization and strain gradient optimization of PECVD poly-SiGe layers for MEMS applications, Sens. Act. A 130–131, 403–410 (2006)Google Scholar
  185. 185.
    S. Kannan, C. Taylor, D. Allred: PECVD growth of Six:Ge1-x films for high speed devices and MEMS, J. Non-Crystalline Solids 352, 1272–1274 (2006)Google Scholar
  186. 186.
    M. Gromova, K. Baert, C. van Hoof, A. Mehta, A. Witvrouw: The novel use of low temperature hydrogenated microcrystalline silicon germanium (μcSiGe:H) for MEMS applications, Microelectron. Eng. 76, 266–271 (2004)Google Scholar
  187. 187.
    C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Larmer, F. Fischer, S. Kronmuller, V. Leca, B. Otter: New low-stress PECVD poly-SiGe Layers for MEMS, J. Microelectromech. Syst. 12, 816–825 (2003)Google Scholar
  188. 188.
    A. Mehta, M. Gromova, C. Rusu, R. Olivier, K. Baert, C. van Hoof, A. Witvrouw: Novel high growth rate processes for depositing poly-sige structural layers at CMOS compatible temperatures. Proceedings of the 17th International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, pp. 721–724 (2004)Google Scholar
  189. 189.
    A. Molfese, A. Mehta, A. Witvrouw: Determination of stress profile and optimization of stress gradient in PECVD poly-SiGe films, Sens. Act. A 118, 313–321 (2005)Google Scholar
  190. 190.
    A. Mehta, M. Gromova, P. Czarnecki, K. Baert, A. Witvrouw: Optimisation of PECVD poly-SiGe layers for MEMS post-processing on top of CMOS. Technical Digest, 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, pp. 1326–1329 (2005)Google Scholar
  191. 191.
    S. Sedky, M. Gromova, T. van der Donck, J.P. Celis, A. Witvrouw: Characterization of KrF excimer laser annealed PECVD SixGe1-x for MEMS post-processing, Sens. Act. A 127, 316–323 (2006)Google Scholar
  192. 192.
    P.M. Sarro: Silicon carbide as a new MEMS technology, Sens. Act. 82, 210–218 (2000)Google Scholar
  193. 193.
    A. Klumpp, U. Schaber, H.L. Offereins, K. Kuhl, H. Sandmaier: Amorphous silicon carbide and its application in silicon micromachining, Sens. Act. A 41–42, 310–316 (1994)Google Scholar
  194. 194.
    U. Schmid, M. Eickhoff, C. Richter, G. Krötz, D. Schmitt-Landsiedel: Etching characteristics and mechanical properties of a-SiC:H thin films, Sens. Act. A 94: 87–94 (2001)Google Scholar
  195. 195.
    H. Zhang, H. Guo, Y. Wang, G. Zhang, Z. Li: Study on a PECVD SiC-coated pressure sensor, J. Micromech. Microeng. 17, 426–431 (2007)Google Scholar
  196. 196.
    G. Rehder, M.N.P. Carreño: Thermally actuated a-SiC:H MEMS fabricated by a PECVD process, J. Non-Crystalline Solids 352, 1822–1828 (2006)Google Scholar
  197. 197.
    G. Rehder, M.N.P. Carreño: PECVD a-SiC:H Young’s modulus obtained by MEMS resonant frequency. J. Non-Crystalline Solids 354, 2359–2364 (2008)Google Scholar
  198. 198.
    A.F. Flannery, N. Mourlas, C.W. Storment, S. Tsai, S.H. Tan, J. Heck, D. Monk, T. Kim, B. Gogoi, G.T.A. Kovacs: PECVD silicon carbide as a mechanically resistant material for micromachined transducers, Sens. Act. A 70, 48–55 (1998)Google Scholar
  199. 199.
    L.S. Pakula, H. Yang, H.T.M. Pham, P.J. French, P.M. Sarro: Fabrication of a CMOS compatible pressure sensor for harsh environments, J. Micromech. Microeng. 14, 1478–1483 (2004)Google Scholar
  200. 200.
    P.M. Sarro, C.R. deBoer, E. Korkmaz, J.M.W. Laros: Low-stress PECVD SiC thin films for IC-compatible microstructures, Sens. Act. A 67, 175–180 (1998)Google Scholar
  201. 201.
    C. Iliescu, B. Chen, D.P. Poenar, Y.Y. Lee: PECVD amorphous silicon carbide membranes for cell culturing, Sens. Act. B 129, 404–411 (2008)Google Scholar
  202. 202.
    C. Iliescu, B. Chen, J. Wei, A.J. Pang: Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition, Thin Solid Films 516, 5189–5193 (2008)Google Scholar
  203. 203.
    J. Du, C.A. Zorman: Low temperature a-SiC/Si direct bonding technology for MEMS/NEMS. Technical Digest of the 14th International Conference on Solid State Sensors, Actuators and Microsystems, Lyon, France, pp. 2075–2078 (2007)Google Scholar
  204. 204.
    A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)Google Scholar
  205. 205.
    S.A. Smallwood, K.C. Eapen, S.T. Patton, J.S. Zabinski: Performance results of MEMS coated with a conformal DLC, Wear 260, 1179–1189 (2006)Google Scholar
  206. 206.
    J.K. Luo, Y.Q. Fu, H.R Le, J.A. Williams, S.M. Spearing, W.I. Milne: Diamond and diamond-like carbon MEMS, J. Micromech. Microeng. 17, S147–S163 (2007)Google Scholar
  207. 207.
    S.-J. Cho, K.-R. Lee, K.Y. Eun, J.H. Jeong, D. Kwon: A method of determining the elastic properties of diamond-like carbon films. Diam. Relat. Mater. 8, 1067–1072 (1999)Google Scholar
  208. 208.
    S.-J. Cho, K.-R. Lee, K.Y. Eun. J.H. Han, D.H. Ko: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films, Thin Solid Films 332, 207–210 (1998)Google Scholar
  209. 209.
    B. Zhou, L. Wang, N. Mehta, S. Morshed, A. Erdemir, O. Eryilmaz, B.C. Prorok: The mechanical properties of freestanding near-frictionless carbon films relevant to MEMS, J. Micromech. Microeng. 16, 1374–1381 (2006)Google Scholar
  210. 210.
    P. Gennissen, M. Bartek, P.J. French, P.M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: stress minimization and applications, Sens. Act. A62, 636–645 (1997)Google Scholar
  211. 211.
    P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: Deposition, structuring, and mechanical characterization, Sens. Act. A54, 674–678 (1996)Google Scholar
  212. 212.
    S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)Google Scholar
  213. 213.
    M. Kirsten, B. Wenk, F. Ericson, J.A. Schweitz, W. Reithmuller, P. Lang: Deposition of thick doped polysilicon films with low stress in an epitaxial reactor for surface micromachining applications, Thin Solid Films 259, 181–187 (1995)Google Scholar
  214. 214.
    S. Greek, F. Ericson, S. Johansson, J.A. Schweitz: In situ tensile strength measurement and Weibull analysis of thick film and thin film micromachined polysilicon structures, Thin Solid Films 292, 247–254 (1997)Google Scholar
  215. 215.
    O. De Sagazan, M. Denoual, P. Guil, D. Gaudin, O. Bonnaud: Microelectromechanical systems fast fabrication by selective thick polysilicon growth in epitaxial reactor, Microsyst. Technol. 12, 953–958 (2006)Google Scholar
  216. 216.
    M. Furtsch, M. Offenberg, A. Vila, A. Comet, J.R. Morante: Texture and stress profile in thick polysilicon films suitable for fabrication of microstructures, Thin Solid Films 296, 177–180 (1997)Google Scholar
  217. 217.
    M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sens. Act. 74, 56–59 (1999)Google Scholar
  218. 218.
    G. Krotz, H. Moller, M. Eickhoff, S. Zappe, R. Ziermann, E. Obermeier, J. Stoemenos: Heteroepitaxial growth of 3C-SiC on SOI for sensor applications, Mater. Sci. Eng. B 61, 516–521 (1999)Google Scholar
  219. 219.
    D. Young, J.D. Du, C.A. Zorman, W.H. Ko: High-temperature single crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)Google Scholar
  220. 220.
    N. Moronuki, M. Kojima, A. Kakuta: Single-crystal SiC thin-film produced by epitaxial growth and its application to micro-mechanical devices, Thin Solid Films 516, 5344–5348 (2008)Google Scholar
  221. 221.
    M. Pozzi, M. Hassan, A.J. Harris, J.S. Burdess, L. Jiang, K.K. Lee, R. Cheung, G.J. Phelps, N.G. Wright, C.A. Zorman, M. Mehregany: Mechanical properties of a 3C-SiC film between room temperature and 600°C, J. Phys. D: Appl. Phys. 40, 3335–3342 (2007)Google Scholar
  222. 222.
    C.M Su, M. Wuttig, A. Fekade, M. Spencer: Elastic and anelastic properties of chemical vapor deposited epitaxial 3C-SiC, J. Appl. Phys. 77, 5611–5615 (1995)Google Scholar
  223. 223.
    K.M. Jackson, J. Dunning, C.A. Zorman, M. Mehregany, W.N. Sharpe Jr.: Mechanical properties of epitaxial 3C silicon carbide thin films, J. Microelectromech. Syst. 14, 664–672 (2005)Google Scholar
  224. 224.
    C. Gourbeyre, T. Chassagne, M. Le Berre, G. Ferro, E. Gautier, Y. Monteil, D. Barbier: Correlation between epitaxial growth conditions of 3C-SiC thin films on Si and mechanical behavior of 3C-SiC self-suspended membranes, Sens. Act. A 99, 31–34 (2002)Google Scholar
  225. 225.
    J.S. Mitchell, C.A. Zorman, T. Kicher, S. Roy, M. Mehregany: Examination of bulge test for determining residual stress, Young’s modulus and Poisson’s ratio of 3C-SiC thin films, J. Aerosp. Eng. 16, 46–54 (2003)Google Scholar
  226. 226.
    A.A. Volinsk, G. Kravchenko, P. Waters, J.D. Reddy, C. Locke, C. Frewin, S.E. Saddow: Residual stress in CVD-grown 3C-SiC films on Si substrates, Mater. Res. Soc. Symp. Proc. 1069: 1069-D03-05 (2008)Google Scholar
  227. 227.
    Ch. Forster, V. Cimalla, K. Bruchner, M. Hein, J. Pezoldt, O. Ambacher: Micro-electromechanical systems based on 3C-SiC/Si heterostructures, Mater. Sci. Eng. C 25, 804–808 (2005)Google Scholar
  228. 228.
    K. Hjort, J. Soderkvist, J.A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)Google Scholar
  229. 229.
    Y. Uenishi, H. Tanaka, H. Ukita: Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining, IEEE Trans. Electron Dev. 41, 1778–1783 (1994)Google Scholar
  230. 230.
    M.W. Pruessner, T.T. King, D.P. Kelly, R. Grover, L.C. Calhoun, R. Ghodssi: Mechanical property measurement of InP-based MEMS for optical communications, Sens. Act. A 105, 190–200 (2003)Google Scholar
  231. 231.
    J. Arokiaraj, S. Tripathy, S. Vicknesh, A. Ramam: Realization of freestanding InP membranes on Si by low-temperature wafer bonding and stress analysis using micro-Raman spectroscopy, Appl. Phys. Lett. 88, 221901 (2006)Google Scholar
  232. 232.
    M.A. Shah, P. Jisheng, V. Shanmugan, R. Akkipeddi: Fabrication of moisture-desensitized freestanding structures from InP for photonic-MEMS applications, J. Electrochem. Soc. 153, G7–G11 (2006)Google Scholar
  233. 233.
    T. Kusserow, N. Dharmarasu, H. Hillmer, T. Nakamura, T. Hayakawa, B. Vengatesan: Tailored stress in InP/GaInAs layers for InP/air-gap DBR-Filters with photonic crystals. IEEE/LEOS International Conference on Optical MEMS Applications, Big Sky, MT, pp. 88–89 (2006)Google Scholar
  234. 234.
    C.J. Tay, C. Quan, M. Gopal, L. Shen, R. Akkipeddi: Nanoindentation techniques in the measurement of mechanical properties of InP-based free-standing MEMS structures, J. Micromech. Microeng. 18, 025015 (2008)Google Scholar
  235. 235.
    E. Sillero, D. López-Romero, A. Bengoechea, M.A. Sánchez-García, F. Calle: Fabrication and stress relief modelling of GaN based MEMS test structures grown by MBE on Si(111), Phys. Status Solidi C 5, 1974–1976 (2008)Google Scholar
  236. 236.
    M.A. Shah, S. Vicknesh, L.S. Wang, J. Arokiaraj, A. Ramam, S.J. Chua, S. Tripathy: Fabrication of freestanding GaN micromechanical structures on silicon-on-insulator substrates, Electrochem. Solid State Lett. 8, G275–G279 (2005)Google Scholar
  237. 237.
    S. Tripathy, V.K.X. Lin, S. Vicknesh, S.J. Chua: Micro-Raman probing of residual stress in freestanding GaN-based micromechanical structures fabricated by a dry release technique, J. Appl. Phys. 101, 063525 (2007)Google Scholar
  238. 238.
    K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996)Google Scholar
  239. 239.
    E. Peiner, K. Fricke, I. Behrens, A. Bakin, A. Schlachetzki: Hetero-micromachining of epitaxial III/V compound semiconductors, Sens. Act. A 85, 324–329 (2000)Google Scholar
  240. 240.
    K. Fricke, E. Peiner, M. Chahoud, A. Schlachetzki: Fracture properties of InP microcantilevers by hetero-micromachining, Sens. Act. A 76, 395–402 (1999)Google Scholar
  241. 241.
    H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) heteroepitaxial systems, Physica E 13, 1163–1167 (2002)Google Scholar
  242. 242.
    H. Yamaguchi, S. Miyashita, Y. Hirayama: Mechanical and piezoresistive properties of InAs/AlGaSb cantilevers, Appl. Surf. Sci. 237, 645–649 (2004)Google Scholar
  243. 243.
    K. Deng, K.P. Kumar, L. Li, D.L. Devoe: Piezoelectric disk resonators based on epitaxial AlGaAs films, J. Microelectromech. Syst. 16, 155–162 (2007)Google Scholar
  244. 244.
    T. Abe, M.L. Reed: Low strain sputtered polysilicon for micromechanical structures. Proceedings of the 9th International Workshop on Micro Electro Mechanical Systems, San Diego, CA, pp. 258–262 (1996)Google Scholar
  245. 245.
    K.A. Honer, G.T.A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Act. A 91, 392–403 (2001)Google Scholar
  246. 246.
    P. Pal, S. Chandra: RF sputtered silicon for MEMS, J. Micromech. Microeng. 15, 1536–1546 (2005)Google Scholar
  247. 247.
    N. Ledermann, J. Baborowski, J.P. Muralt, N. Xantopoulos, J.M. Tellenbach: Sputtered silicon carbide thin films as protective coating for MEMS applications, Surf. Coatings Technol. 125, 246–250 (2000)Google Scholar
  248. 248.
    S. Inoue, T. Namazu, H. Tawa, M. Niibe, K. Koterazawa: Stress control of a-SiC films deposited by dual source dc magnetron sputtering, Vacuum 80, 744–747 (2006)Google Scholar
  249. 249.
    V. Bhatt, S. Chandra: Silicon dioxide films by RF sputtering for microelectronic and MEMS, J. Micromech. Microeng. 17, 1066–1077 (2007)Google Scholar
  250. 250.
    E. Peiner, A. Tibrewala, R. Bandorf, H. Luthje, L. Doering, W. Limmer: Diamond-like carbon for MEMS, J. Micromech. Microeng. 17, S83–S90 (2007)Google Scholar
  251. 251.
    J.P. Sullivan, T.A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001)Google Scholar
  252. 252.
    T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond. Appl. Phys. Lett. 71, 3820–3822 (1997)Google Scholar
  253. 253.
    S. Cho, I. Chasiotis, T.A. Friedmann, J.P. Sullivan: Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices, J. Micromech. Microeng. 15, 728–735 (2005)Google Scholar
  254. 254.
    N.D. Hoivik, J.W. Elam, R.J. Linderman, V.M. Bright, S.M. George, Y.C. Lee: Atomic layer deposited protective coatings for micro-electromechanical systems, Sens. Act. A 103, 100–108 (2003)Google Scholar
  255. 255.
    W.S. Yang, S.W. Kang: Comparative study on chemical stability of dielectric oxide films under HF wet and vapor etching for radiofrequency microelectromechanical system application, Thin Solid Films 500, 231–236 (2006)Google Scholar
  256. 256.
    T.M. Mayer, J.W. Elam, S.M. George, P.G. Kotula, R.S. Goeke: Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices, Appl. Phys. Lett. 82, 2883–2885 (2003)Google Scholar
  257. 257.
    T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G. Kotula, R.S. Goeke, R.K. Grubbs: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Mater 54, 4731–4743 (2006)Google Scholar
  258. 258.
    C.F. Herrmann, F.W. DelRio, D.C. Miller, S.M. George, V.M. Bright, J.L. Ebel, R.E. Strawser, R. Cortez, K.D. Leedy: Alternative dielectric films for rf MEMS capacitive switches deposited using atomic layer deposited Al2O3/ZnO alloys, Sens. Act. A 135, 262–272 (2007)Google Scholar
  259. 259.
    Y.-J. Chang, J.M. Gray, A. Imtiaz, D.S. Seghete, T.M. Wallis, S.M. George, P. Kabos, C.T. Rogers, V.M. Bright: Micromachined resonators of high Q-factor based on atomic layer deposited alumina, Sens. Act. A 154, 229–237 (2009)Google Scholar
  260. 260.
    M.K. Tripp, C. Stampfer, D.C. Miller, T. Helbling, C.F. Herrmann, C. Hierold, K. Gall, S.M. George, V.M. Bright: The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems, Sens. Act. A 130–131, 419–429 (2006)Google Scholar
  261. 261.
    M.M. Rahman, R. Tero, T. Urisu: Shrinking of spin-on-glass films induced by synchrotron radiation and its application to three dimensional microfabrications, Jpn. J. Appl. Phys. 43, 3941–3944 (2004)Google Scholar
  262. 262.
    A. Yasseen, J.D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)Google Scholar
  263. 263.
    R. Liu, M.J. Vasile, D.J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)Google Scholar
  264. 264.
    L.A. Liew, W. Zhang, V.M. Bright, A. Linan, M.L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Act. A 89, 64–70 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian A. Zorman
    • 1
  • Robert C. Roberts
    • 1
  • Li Chen
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations