Advertisement

Fluorescence-Signaling Nucleic Acid-Based Sensors

  • Razvan Nutiu
  • Lieven P. Billen
  • Yingfu Li
Chapter

Abstract

It is widely known that two single-stranded nucleic acids with complementary sequences have the inherent ability to form Watson-Crick duplex structures. The simplicity and sequence-specificity of duplex structure formation, the high chemical stability of a duplex, and the convenience of automated synthesis have made DNA oligonucleotides an ideal choice as probes for the detection of nucleic acids. Recently developed in vitro selection techniques permit creation of DNA and RNA “aptamers” that are capable of binding a wide variety of nonnucleic acid targets with high affinity and specificity. Aptamers have considerably broadened the utility of nucleic acids as probes for detection of biological and nonbiological targets. In vitro selection also allows generation of artificial ribozymes (catalytic RNAs) and deoxyribozymes (catalytic DNAs) with desirable functions. Aptamers, ribozymes, and deoxyribozymes have become increasingly valuable molecular tools in the form of switches and sensors. Unfortunately, binding or catalytic actions by these switches and sensors do not usually lead to an easily detectable signal, and the lack of a facile reporting method could substantially reduce their value. To facilitate the exploitation of nucleic acid switches and sensors for detection-related applications, many recent studies have explored fluorescence signaling as a convenient approach for the reporting of binding and catalytic events. This chapter is devoted to the discussion of these efforts. The reporter molecules to be described include molecular beacons, signaling aptamers, and signaling ribozymes and deoxyribozymes.

Keywords

Molecular Beacon Duplex Structure Hammerhead Ribozyme Hairpin Ribozyme Molecular Recognition Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Updike SJ, Hicks GP. The enzyme electrode. Nature 1967; 214:986–988.CrossRefPubMedGoogle Scholar
  2. 2.
    Updike SJ, Hicks GP. Reagentless substrate analysis with immobilized enzymes. Science 1967; 158:270–272.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakamura H, Karube I. Current research activity in biosensors. Anal Bioanal Chem 2003; 377:446–468.CrossRefPubMedGoogle Scholar
  4. 4.
    Subrahmanyam S, Piletsky SA, Turner AP. Application of natural receptors in sensors and assays. Anal Chem 2002; 74:3942–3951.CrossRefPubMedGoogle Scholar
  5. 5.
    D’Orazio P. Biosensors in clinical chemistry. Clin Chim Acta 2003; 334:41–69.CrossRefPubMedGoogle Scholar
  6. 6.
    Pancrazio JJ, Whelan JP, Borkholder DA et al. Development and application of cell-based biosensors. Ann Biomed Eng 1999; 27:697–711.CrossRefPubMedGoogle Scholar
  7. 7.
    Rizzuto R, Pinton P, Brini M et al. Mitochondria as biosensors of calcium microdomains. Cell Calcium 1999; 26:193–199.CrossRefPubMedGoogle Scholar
  8. 8.
    Wijesuriya DC, Rechnitz GA. Biosensors based on plant and animal tissues. Biosens Bioelectron 1993; 8:155–160.CrossRefPubMedGoogle Scholar
  9. 9.
    Ye L, Haupt K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 2004; 378:1887–1897.CrossRefPubMedGoogle Scholar
  10. 10.
    Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517.CrossRefPubMedGoogle Scholar
  11. 11.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249:505–510.CrossRefPubMedGoogle Scholar
  12. 12.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346:818–822.CrossRefPubMedGoogle Scholar
  13. 13.
    Famulok M. Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 1999; 9:324–329.CrossRefPubMedGoogle Scholar
  14. 14.
    Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem 1999; 68:611–647.CrossRefPubMedGoogle Scholar
  15. 15.
    Fahlman RP, Sen D. DNA conformational switches as sensitive electronic sensors of analytes. J Am Chem Soc 2002; 124:4610–4616.CrossRefPubMedGoogle Scholar
  16. 16.
    Fritz J, Bailer MK, Lang HP et al. Translating biomolecular recognition into nanomechanics. Science 2000; 288:316–318.CrossRefPubMedGoogle Scholar
  17. 17.
    Liss M, Petersen B, Wolf H et al. An aptamer-based quartz crystal protein biosensor. Anal Chem 2002; 74:4488–4495.CrossRefPubMedGoogle Scholar
  18. 18.
    Potyrailo RA, Conrad RC, Ellington AD et al. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 1998; 70:3419–3425.CrossRefPubMedGoogle Scholar
  19. 19.
    Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum, 1999.Google Scholar
  20. 20.
    Arnold MA. Fiber-optic biosensors. J Biotechnol 1990; 15:219–228.CrossRefPubMedGoogle Scholar
  21. 21.
    Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem 2002; 74:2663–2677.CrossRefPubMedGoogle Scholar
  22. 22.
    Breaker RR. In vitro selection of catalytic polynucleotides. Chem Rev 1997; 97:371–390.CrossRefPubMedGoogle Scholar
  23. 23.
    Sen D, Geyer CR. DNA enzymes. Curr Opin Chem Biol 1998; 2:680–687.CrossRefPubMedGoogle Scholar
  24. 24.
    Li Y, Breaker RR. Deoxyribozymes: New players in the ancient game of biocatalysis. Curr Opin Struct Biol 1999; 9:315–323.CrossRefPubMedGoogle Scholar
  25. 25.
    Jaschke A. Artificial ribozymes and deoxyribozymes. Curr Opin Struct Biol 2001; 11:321–326.CrossRefPubMedGoogle Scholar
  26. 26.
    Emilsson GM, Breaker RR. Deoxyribozymes: New activities and new applications. Cell Mol Life Sci 2002; 59:596–607.CrossRefPubMedGoogle Scholar
  27. 27.
    Carmi N, Shultz LA, Breaker RR. In vitro selection of self-cleaving DNAs. Chem Biol 1996; 3:1039–1046.CrossRefPubMedGoogle Scholar
  28. 28.
    Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol 1994; 1:223–229.CrossRefPubMedGoogle Scholar
  29. 29.
    Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997; 94:4262–4266.CrossRefPubMedGoogle Scholar
  30. 30.
    Flynn-Charlebois A, Wang Y, Prior TK et al. Deoxyribozymes with 2’–5’ RNA ligase activity. J Am Chem Soc 2003; 125:2444–2454.CrossRefPubMedGoogle Scholar
  31. 31.
    Li Y, Breaker RR. Phosphorylating DNA with DNA. Proc Nad Acad Sci USA 1999; 96:2746–2751.CrossRefGoogle Scholar
  32. 32.
    Breaker RR. Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 2002; 13:31–39.CrossRefPubMedGoogle Scholar
  33. 33.
    Tyagi S, Kramer FR. Molecular beacons: Probes that fluoresce upon hybridization. Nat Biotechnol 1996; 14:303–308.CrossRefPubMedGoogle Scholar
  34. 34.
    Marras SA, Kramer FR, Tyagi S. Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal 1999; 14:151–156.PubMedGoogle Scholar
  35. 35.
    Tan W, Fang X, Li J et al. Molecular beacons: A novel DNA probe for nucleic acid and protein studies. Chem Eur J 2000; 6:1107–1111.CrossRefGoogle Scholar
  36. 36.
    Zhang P, Beck T, Tan W. Design of a molecular beacon DNA probe with two fluorophores. Angew Chem Int Ed 2001; 40:402–405.CrossRefGoogle Scholar
  37. 37.
    Bratu DP, Cha BJ, Mhlanga MM et al. Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci USA 2003; 100:13308–13313.CrossRefPubMedGoogle Scholar
  38. 38.
    Tyagi S, Marras SA, Kramer FR. Wavelength-shifting molecular beacons. Nat Biotechnol 2000; 18:1191–1196.CrossRefPubMedGoogle Scholar
  39. 39.
    Nutiu R, Li Y. Tripartite molecular beacons. Nucleic Acids Res 2002; 30:e94.CrossRefPubMedGoogle Scholar
  40. 40.
    Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 2001; 19:365–370.CrossRefPubMedGoogle Scholar
  41. 41.
    Du H, Disney MD, Miller BL et al. Hybridization-based unquenching of DNA hairpins on Au surfaces: Prototypical “molecular beacon” biosensors. J Am Chem Soc 2003; 125:4012–4013.CrossRefPubMedGoogle Scholar
  42. 42.
    Kostrikis LG, yagi S, Mhlanga MM et al. Spectral genotyping of human alleles. Science 1998; 279:1228–1229.CrossRefPubMedGoogle Scholar
  43. 43.
    Bar-Ziv R, Libchaber A. Effects of DNA sequence and structure on binding of RecA to single-stranded DNA. Proc Nad Acad Sci USA 2001; 98:9068–9073.CrossRefGoogle Scholar
  44. 44.
    Li JJ, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res 2000; 28:e52.CrossRefPubMedGoogle Scholar
  45. 45.
    Rizzo J, GifYord LK, Zhang X et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity. Mol Cell Probes 2002; 16:277–283.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu J, Feldman P, Chung TD. Real-time monitoring in vitro transcription using molecular beacons. Anal Biochem 2002; 300:40–45.CrossRefPubMedGoogle Scholar
  47. 47.
    Nilsson M, Gullberg M, Dahl F et al. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res 2002; 30:e66.CrossRefPubMedGoogle Scholar
  48. 48.
    Jhaveri S, Kirby R, Conrad R et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc 2000; 122:2469–2473.CrossRefGoogle Scholar
  49. 49.
    Yamana K, Ohtani Y, Nakano H et al. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorg Med Chem Lett 2003; 13:3429–3431.CrossRefPubMedGoogle Scholar
  50. 50.
    Jhaveri S, Rajendran M, Ellington AD. In vitro selection of signaling aptamers. Nat Biotechnol 2000; 18:1293–1297.CrossRefPubMedGoogle Scholar
  51. 51.
    Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem 2001; 294:126–131.CrossRefPubMedGoogle Scholar
  52. 52.
    Yamamoto R, Baba T, Kumar PK. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 2000; 5:389–396.CrossRefPubMedGoogle Scholar
  53. 53.
    Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 2001; 123:4928–4931.CrossRefPubMedGoogle Scholar
  54. 54.
    Li JJ, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 2002; 292:31–40.CrossRefPubMedGoogle Scholar
  55. 55.
    Fang X, Sen A, Vicens M et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 2003; 4:829–834.CrossRefPubMedGoogle Scholar
  56. 56.
    Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc 2003; 125:4771–4778.CrossRefPubMedGoogle Scholar
  57. 57.
    Merino EJ, Weeks KM. Fluorogenic resolution of ligand binding by a nucleic acid aptamer. J Am Chem Soc 2003; 125:12370–12371.CrossRefPubMedGoogle Scholar
  58. 58.
    Perkins TA, Wolf DE, Goodchild J. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry 1996; 35:16370–16377.CrossRefPubMedGoogle Scholar
  59. 59.
    Walter NG, Burke JM. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA 1997; 3:392–404.PubMedGoogle Scholar
  60. 60.
    Jenne A, Gmelin W, Raffler N et al. Real-time charazterization of ribozymes by fluorescence resonance energy transfer (FRET). Angew Chem Int Ed 1999; 9:1300–1303.CrossRefGoogle Scholar
  61. 61.
    Singh KK, Parwaresch R, Krupp G. Rapid kinetic characterization of hammerhead ribozymes by real-time monitoring of fluorescence resonance energy transfer (FRET). RNA 1999; 5:1348–1356.CrossRefPubMedGoogle Scholar
  62. 62.
    Vitiello D, Pecchia DB, Burke JM. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer. RNA 2000; 6:628–637.CrossRefPubMedGoogle Scholar
  63. 63.
    Jenne A, Hartig JS, Piganeau N et al. Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nat Biotechnol 2001; 19:56–61.CrossRefPubMedGoogle Scholar
  64. 64.
    Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead Ions. J Am Chem Soc 2000; 122:10466–10467.CrossRefGoogle Scholar
  65. 65.
    Faulhammer D, Famulok M. The Ca(II) ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew Chem Int Ed 1996; 35:2809–2813.Google Scholar
  66. 66.
    Li J, Zheng W, Kwon AH et al. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res 2000; 28:481–488.CrossRefPubMedGoogle Scholar
  67. 67.
    Cruz RPG, Withers JW, Li Y. Dinucleotide junction cleavage versatility of 8–17 deoxyribozyme. Chem Biol 2004; 11:57–67.PubMedGoogle Scholar
  68. 68.
    Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 2003; 125:6642–6643.CrossRefPubMedGoogle Scholar
  69. 69.
    Bruesehoff PJ, Li J, Augustine AJ et al. Improving metal ion specificity during in vitro selection of catalytic DNA. Comb Chem High Throughput Screen 2002; 5:327–335.PubMedGoogle Scholar
  70. 70.
    Stojanovic MN, de Prada P, Landry DW. Catalytic molecular beacons. ChemBioChem 2001; 2:411–415.CrossRefPubMedGoogle Scholar
  71. 71.
    Todd AV, Fuery CJ, Impey HL et al. DzyNA-PCR: Use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin Chem 2000; 46:625–630.PubMedGoogle Scholar
  72. 72.
    Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J Am Chem Soc 2002; 124:3555–3561.CrossRefPubMedGoogle Scholar
  73. 73.
    Stojanovic MN, Stefanovic D. Deoxyribozyme-based half-adder. J Am Chem Soc 2003; 125:6673–6676.CrossRefPubMedGoogle Scholar
  74. 74.
    Stojanovic MN, Stefanovic D. A deoxyribozyme-based molecular automaton. Nat Biotechnol 2003; 21:1069–1074.CrossRefPubMedGoogle Scholar
  75. 75.
    Hartig JS, Najafi-Shoushtari SH, Grune I et al. Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 2002; 20:717–722.CrossRefPubMedGoogle Scholar
  76. 76.
    Hartig JS, Famulok M. Reporter ribozymes for real-time analysis of domain-specific interactions in biomolecules: HIV-1 reverse transcriptase and the primer-template complex. Angew Chem Int Ed 2002; 41:4263–4266.CrossRefGoogle Scholar
  77. 77.
    Hartig JS, Grune I, Najafi-Shoushtari SH et al. Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. J Am Chem Soc 2004; 126:722–723.CrossRefPubMedGoogle Scholar
  78. 78.
    Mei SH, Liu Z, Brennan JD et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 2003; 125:412–420.CrossRefPubMedGoogle Scholar
  79. 79.
    Liu Z, Mei SH, Brennan JD et al. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J Am Chem Soc 2003; 125:7539–7545.CrossRefPubMedGoogle Scholar
  80. 80.
    Matsuo T. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim Biophys Acta 1998; 1379:178–184.PubMedGoogle Scholar
  81. 81.
    Sokol DL, Zhang X, Lu P et al. Real time detection of DNA. RNA hybridization in living cells. Proc Natl Acad Sci USA 1998; 95:11538–11543.CrossRefPubMedGoogle Scholar
  82. 82.
    Perlette J, Tan W. Real-time monitoring of intracellular mRNA hybridization inside single living cells. Anal Chem 2001; 73:5544–5550.CrossRefPubMedGoogle Scholar
  83. 83.
    Famulok M, Verma S. In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends Biotechnol 2002; 20:462–466.CrossRefPubMedGoogle Scholar
  84. 84.
    Nutiu R, Yu JMY, Li Y. An aptamer-based fluorescence assay for monitoring enzymatic activity and enzyme inhibitor screening. ChemBioChem 2004; 5:1139–1144.CrossRefPubMedGoogle Scholar
  85. 85.
    Srinivasan J, Cload ST, Hamaguchi N et al. ADP-specific sensors enable universal assay of protein kinase activity. Chem Biol 2004; 11:499–508.CrossRefPubMedGoogle Scholar
  86. 86.
    Nutiu R, Li Y. Structure-switching signaling aptamers: Transducing molecular recognition into fluorescence signaling. Chem Eur J 2004; 10:1868–1876.CrossRefGoogle Scholar
  87. 87.
    Schlosser K, Mei SHJ, Li Y. Catalytic DNAs as reporter molecules. Recent Research Developments in Chemistry. India, Trivandrum: Research Signpost, 2003:1.Google Scholar
  88. 88.
    Achenbach JC, Nutiu R, Li Y. Structure-switching allosteric deoxyribozymes. Anal Chim Acta 2005; 534:41–51.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Busines Media 2006

Authors and Affiliations

  • Razvan Nutiu
    • 1
    • 2
  • Lieven P. Billen
    • 1
    • 2
  • Yingfu Li
    • 1
    • 2
  1. 1.Department of BiochemistryMcMaster UniversityHamiltonCanada
  2. 2.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations