Neural Crest Cells and the Community of Plan for Craniofacial Development

Historical Debates and Current Perspectives
  • Drew M. Noden
  • Richard A. SchneiderEmail author
Part of the Advances in Experimental Medicine and Biology book series (volume 589)


After their initial discovery in the mid 1800s, neural crest cells transitioned from the category of renegade intra-embryonic wanderers to achieve rebel status, provoked especially by the outrageous claim that they participate in skeletogenesis, an embryonic event theretofore reserved exclusively for mesoderm. Much of the 20th century found neural crest cells increasingly viewed as a unique population set apart from other embryonic populations and more often treated as orphans rather than fully embraced by mainstream developmental biology. Now frequently touted as a fourth germ layer, the neural crest has become a fundamental character for distinguishing craniates from other metazoans, and has radically redefined perceptions about the organization and evolution of the vertebrate jaws and head. In this chapter we provide an historical overview of four main research areas in which the neural crest have incited fervent discord among workers past and present. Specifically, we describe how discussions surrounding the neural crest threatened the germ layer theory, upended traditional schemes of vertebrate head organization, challenged assumptions about morphological conservation and homology, and redefined concepts on mechanisms of craniofacial patterning. In each case we frame these debates in the context of recent data on the developmental fate and roles of the neural crest.


Neural Crest Neural Crest Cell Pharyngeal Arch Paraxial Mesoderm Cranial Neural Crest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huxley TH. On the theory of the vertebrate skull. Proc R Soc Lond 1858;9:381–457.Google Scholar
  2. 2.
    Hall BK. The Neural Crest in Development and Evolution. New York, Berlin: Springer, 1999.Google Scholar
  3. 3.
    Churchill FB. The rise of classical descriptive embryology. Dev Biol (NY 1985) 1991;7:1–29.CrossRefGoogle Scholar
  4. 4.
    Gilbert SF. A Conceptual History of Modern Embryology. New York: Plenum, 1991.Google Scholar
  5. 5.
    Huxley TH. Lectures on the Elements of Comparative Anatomy. London: J Churchill and Sons, 1864.Google Scholar
  6. 6.
    Russell ES. Form and Function: A Contribution to the History of Animal Morphology. London: John Murray Publishers Ltd., 1916.Google Scholar
  7. 7.
    de Beer GR. The differentiation of neural crest cells into visceral cartilages and odontoblasts in amblystoma, and a reexamination of the germ-layer theory. Proc R Soc Lond B Biol Sci 1947;134(876):377–398.Google Scholar
  8. 8.
    Hörstadius S. The Neural Crest; Its Properties and Derivatives in the Light of Experimental Research. London, New York: Oxford University Press, 1950.Google Scholar
  9. 9.
    Hall BK, Hörstadius S. The Neural Crest. London: Oxford University Press, 1988.Google Scholar
  10. 10.
    Platt JB. A contribution to the morphology of the vertebrate head, based on a study of Acanthias vulgaris. J Morphol 1891;5:78–112.CrossRefGoogle Scholar
  11. 11.
    Platt J. The development of the cartilaginous skull and of the branchial and hypoglossal musculature in Necturus. Morphologisches Jahrbuch 1898;25:377–467.Google Scholar
  12. 12.
    Hill JP, Watson KM. The early development of the brain in marsupials; preliminary communication. J Anat 1958;92(4):493–497.PubMedGoogle Scholar
  13. 13.
    Romer AS. The vertebrate as dual animal-somatic and visceral. In: Dobzhansky T, Hecht MK, Steere WC, eds. Evolutionary Biology, Vol 6. New York: Appleton-Century-Crofts, 1972:121–156.Google Scholar
  14. 14.
    Johnston MC. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec 1966;156(2):143–155.PubMedCrossRefGoogle Scholar
  15. 15.
    Le Douarin NM. A biological cell labelling technique and its use in experimental embryology. Dev Biol 1973;30:217–222.PubMedCrossRefGoogle Scholar
  16. 16.
    Le Lièvre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 1975;34(1):125–154.PubMedGoogle Scholar
  17. 17.
    Le Lièvre CS. Participation of neural crest-derived cells in the genesis of the skull in birds. J Embryol Exp Morphol 1978;47:17–37.PubMedGoogle Scholar
  18. 18.
    Noden DM. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 1978;67(2):296–312.PubMedCrossRefGoogle Scholar
  19. 19.
    Osumi-Yamashita N, Ninomiya Y, Doi H et al. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 1994;164(2):409–419.PubMedCrossRefGoogle Scholar
  20. 20.
    Trainor PA, Tarn PP. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: Codistribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 1995;121(8):2569–2582.PubMedGoogle Scholar
  21. 21.
    Jiang X, Iseki S, Maxson RE et al. Tissue origins and interactions in the mammalian skull vault. Dev Biol 2002;241(1):106–116.PubMedCrossRefGoogle Scholar
  22. 22.
    Chai Y, Jiang X, Ito Y et al. Fate of the mammalian cranial neural crest during tooth and man-dibular morphogenesis. Development 2000;127(8):1671–1679.PubMedGoogle Scholar
  23. 23.
    Matsuoka T, Ahlberg PE, Kessaris N et al. Neural crest origins of the neck and shoulder. Nature 2005;436(7049):347–355.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Gorman S. Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev Dyn 2005;234:124–131.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu HM, Liu B, Chiu SY et al. Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc Natl Acad Sci USA 2005;102(24):8615–8620.PubMedCrossRefGoogle Scholar
  26. 26.
    Gross JB, Hanken J. Cranial neural crest contributes to the bony skull vault in adult Xenopus laevis: Insights from cell labeling studies. J Exp Zoolog B Mol Dev Evol 2005;304(2):169–176.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanken J, Gross JB. Evolution of cranial development and the role of neural crest: Insights from amphibians. J Anat 2005;207(5):437–446.PubMedCrossRefGoogle Scholar
  28. 28.
    Hall BK. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev 2000;2(1):3–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuratani S. Craniofacial development and the evolution of the vertebrates: The old problems on a new background. Zoolog Sci 2005;22(1):1–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Kurz H, Gartner T, Eggli PS et al. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 1996;173(1):133–147.PubMedCrossRefGoogle Scholar
  31. 31.
    Couly GF, Coltey PM, Douarin ML. The triple origin of skull in higher vertebrates: A study in quail-chick chimeras. Development 1993;117:409–429.PubMedGoogle Scholar
  32. 32.
    Evans DJ, Noden DM. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 2006;235(3).Google Scholar
  33. 33.
    Gans C. The feeding mechanism of snakes and its possible evolution. Am Zool 1961;1:217–227.Google Scholar
  34. 34.
    Gans C. Evolutionary origin of the vertebrate skull. In: Hanken J, Hall BK, eds. The Skull, Vol 2. Chicago: University of Chicago Press, 1993:1–35.Google Scholar
  35. 35.
    Appel TA. The Cuvier-Geoffroy Debate: French Biology in the Decade before Darwin. Oxford: Oxford University Press, 1987.Google Scholar
  36. 36.
    de Beer GR. The Development of the Vertebrate Skull. Chicago: University of Chicago Press, 1937.Google Scholar
  37. 37.
    Mitgutsch C. On Carl Gegenbaur’s theory on head metamerism and the selection of taxa for comparisons. Theory Biosci 2003;122:204–229.Google Scholar
  38. 38.
    Allis EP. Concerning the development of the prechordal portion of the vertebrate head. J Anat 1938;72:584–607.PubMedGoogle Scholar
  39. 39.
    Goodrich ES. Studies on the Structure and Development of Vertebrates. Chicago: University of Chicago Press, 1930.Google Scholar
  40. 40.
    Balfour FM. On the development of elasmobranch fishes. Journal of Anatomy and Physiology 1877;11(3):406–490.PubMedGoogle Scholar
  41. 41.
    Marshall AM. On the head cavities and associated nerves of elasmobranchs. Q J Microsc Sci 1881;21:72–97.Google Scholar
  42. 42.
    Orr HB. Contribution to the Embryology of the Lizard. J Morphol 1887;1:311–372.CrossRefGoogle Scholar
  43. 43.
    Locy WA. Contribution to the structure and development of the Vertebrate head. J Morphol 1895;11(3):497–594.CrossRefGoogle Scholar
  44. 44.
    Bjerring HC. A contribution to the structural analysis of the head of craniate animals. Zoologica scripta 1977;6:127–183.Google Scholar
  45. 45.
    Bjerring HC. Major anatomical steps toward craniotedness: A heterodox view based largely on embryological data. Journal of Vertebrate Paleontology 1984;4(1):17–29.CrossRefGoogle Scholar
  46. 46.
    Jarvik E. Basic Structure and Evolution of Vertebrates. London: Academic Press, 1980.Google Scholar
  47. 47.
    Northcutt RG. Ontogeny and phylogeny: A reevaluation of conceptual relationships and some applications. Brain Behav Evol 1990;36:116–140.PubMedGoogle Scholar
  48. 48.
    Goodrich ES. Metameric segmentation and homology. Q J Microsc Sci 1913;59:227–248.Google Scholar
  49. 49.
    Goodrich ES. On the development of the segments of the head in Scyllium. Q J Microsc Sci 1918;63:1–30.Google Scholar
  50. 50.
    Jollie M. The vertebrate head-segmented or a single morphological structure? Journal of Vertebrate Paleontology 1984;4(3):320–329.CrossRefGoogle Scholar
  51. 51.
    Hill C. Developmental history of primary segments of the vertebrate head. Zoologische Jahrbücher 1900;13:393–446.Google Scholar
  52. 52.
    Neal HV. Neuromeres and metameres. J Morphol 1918;31(2):293–315.CrossRefGoogle Scholar
  53. 53.
    Kingsbury BF, Adelmann HB. The morphological plan of the head. Q J Microsc Sci 1924;68:239–285.Google Scholar
  54. 54.
    Kingsbury BF. Branchiomerism and the theory of head segmentation. Journal of Morphology and Physiology 1926;42:83–109.CrossRefGoogle Scholar
  55. 55.
    Platt JB. Ectodermic origin of the cartilages of the head. Anatomischer Anzeiger 1893;8:506–509.Google Scholar
  56. 56.
    Stone LS. Further experiments on the extirpation and transplantation of mesectoderm in amblystoma punctatum. J Exp Zool 1926;44:95–131.CrossRefGoogle Scholar
  57. 57.
    Gans C, Northcutt RG. Neural crest and the origin of vertebrates: A new head. Science 1983;220:268–274.CrossRefPubMedGoogle Scholar
  58. 58.
    Northcutt RG, Gans C. The genesis of neural crest and epidermal placodes. Quarterly Review of Biology 1983;58(1):1–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Northcutt RG. The new head hypothesis revisited. J Exp Zoolog B Mol Dev Evol 2005;304B(4):274–297.CrossRefGoogle Scholar
  60. 60.
    Meier S. Development of the chick embryo mesoblast. Formation of the embryonic and establishment of the metameric pattern. Dev Biol 1979;73:24–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Meier S, Jacobson AG. Experimental studies of the origin and expression of metameric pattern in the chick embryo. J Exp Zool 1982;219:217–232.PubMedCrossRefGoogle Scholar
  62. 62.
    Meier S, Tarn PP. Metameric pattern development in the embryonic axis of the mouse. I. Differentiation of the cranial segments. Differentiation 1982;21(2):95–108.PubMedCrossRefGoogle Scholar
  63. 63.
    Tarn PP, Meier S, Jacobson AG. Differentiation of the metameric pattern in the embryonic axis of the mouse. II. Somitomeric organization of the presomitic mesoderm. Differentiation 1982;21(2):109–122.Google Scholar
  64. 64.
    Meier S, Packard Jr DS. Morphogenesis of the cranial segments and distribution of neural crest in the embryos of the snapping turtle, Chelydra serpentina. Dev Biol 1984;102(2):309–323.PubMedCrossRefGoogle Scholar
  65. 65.
    Packard Jr DS, Meier S. Morphological and experimental studies of the somitomeric organization of the segmental plate in snapping turtle embryos. J Embryol Exp Morphol 1984;84:35–48.PubMedGoogle Scholar
  66. 66.
    Jacobson AG, Meier S. Morphogenesis of the head of a newt: Mesodermal segments, neuromeres, and distribution of neural crest. Dev Biol 1984;106(1):181–193.PubMedCrossRefGoogle Scholar
  67. 67.
    Martindale MQ, Meier S, Jacobson AG. Mesodermal metamerism in the teleost, Oryzias latipes (the medaka). J Morphol 1987;193(3):241–252.PubMedCrossRefGoogle Scholar
  68. 68.
    Jacobson AG. Somitomeres: Mesodermal segments of the head and trunk. In: Hanken J, Hall BK, eds. The Skull, Vol 1. Chicago: University of Chicago Press, 1993:42–76.Google Scholar
  69. 69.
    Kuratani S, Horigome N, Hirano S. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: Evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol 1999;210(2):381–400.PubMedCrossRefGoogle Scholar
  70. 70.
    Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat 2005;207(5):575–601.PubMedCrossRefGoogle Scholar
  71. 71.
    Wachtler F, Jacob M. Origin and development of the cranial skeletal muscles. Bibl Anat 1986;(29):24–46.PubMedGoogle Scholar
  72. 72.
    Freund R, Dorfler D, Popp W et al. The metameric pattern of the head mesoderm-Does it exist? Anat Embryol (Berl) 1996;193(1):73–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Jacobson AG. Somitomeres: Mesodermal segments of vertebrate embryos. Development 1988;104(Suppl):209–220.PubMedGoogle Scholar
  74. 74.
    Trainor PA, Tan SS, Tarn PP. Cranial paraxial mesoderm: Regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 1994;120(9):2397–2408.PubMedGoogle Scholar
  75. 75.
    Noden DM. Craniofacial development: New views on old problems. Anat Rec 1984;208:1–13.PubMedCrossRefGoogle Scholar
  76. 76.
    Anderson CB, Meier S. The influence of the metameric pattern in the mesoderm on migration of cranial neural crest cells in the chick embryo. Dev Biol 1981;85:385–402.PubMedCrossRefGoogle Scholar
  77. 77.
    Noden DM. The migration and cytodifferentiation of cranial neural crest cells. In: Pratt RM, ed. Current Research Trends in Prenatal Craniofacial Development. New York: Elsevier/North Holland, 1980:3–25.Google Scholar
  78. 78.
    Erickson CA, Reedy MV. Neural crest development: The interplay between morphogenesis and cell differentiation. Curr Top Dev Biol 1998;40:177–209.PubMedGoogle Scholar
  79. 79.
    Bronner-Fraser M. Rostrocaudal differences within the somites confer segmental pattern to trunk neural crest migration. Curr Top Dev Biol 2000;47:279–296.PubMedGoogle Scholar
  80. 80.
    Noden DM. Patterning of avian craniofacial muscles. Dev Biol 1986;116:347–356.PubMedCrossRefGoogle Scholar
  81. 81.
    Noden DM. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 1983;168:257–276.PubMedCrossRefGoogle Scholar
  82. 82.
    Couly GF, Coltey PM, Le Douarin NM. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992;114(1):1–15.PubMedGoogle Scholar
  83. 83.
    Noden DM. Interactions and fates of avian craniofacial mesenchyme. Development 1988;103:121–140.PubMedGoogle Scholar
  84. 84.
    Noden DM. Vertebrate craniofacial development: The relation between ontogenetic process and morphological outcome. Brain Behav Evol 1991;38:190–225.PubMedGoogle Scholar
  85. 85.
    Hunt P, Whiting J, Nonchev S et al. The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Development 1991;(Suppl 2):63–77.PubMedGoogle Scholar
  86. 86.
    Le Douarin N, Kalcheim C. The Neural Crest. 2nd ed. Cambridge, New York: Cambridge University Press, 1999.Google Scholar
  87. 87.
    Francis-West PH, Robson L, Evans DJ. Craniofacial development: The tissue and molecular interactions that control development of the head. Adv Anat Embryol Cell Biol 2003;169:III–VI, 1–138.PubMedGoogle Scholar
  88. 88.
    Thorogood P. Differentiation and morphogenesis of cranial skeletal tissues. In: Hanken J, Hall BK, eds. The Skull, Vol 1. Chicago: University of Chicago Press, 1993:112–152.Google Scholar
  89. 89.
    Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 1983;96:144–165.PubMedCrossRefGoogle Scholar
  90. 90.
    Köntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 1996;122(10):3229–3242.PubMedGoogle Scholar
  91. 91.
    Gage PJ, Rhoades W, Prucka SK et al. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 2005;46(11):4200–4208.PubMedCrossRefGoogle Scholar
  92. 92.
    Morriss-Kay GM. Derivation of the mammalian skull vault. J Anat 2001;199 (Pt 1–2):143–151.PubMedCrossRefGoogle Scholar
  93. 93.
    Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996;174(2):221–232.PubMedCrossRefGoogle Scholar
  94. 94.
    Romer AS. Vertebrate Paleontology. Chicago: The University of Chicago Press, 1933.Google Scholar
  95. 95.
    Romer AS. Osteology of the Reptiles. Chicago: University of Chicago Press, 1956.Google Scholar
  96. 96.
    Carroll RL. Vertebrate Paleontology and Evolution. New York: WH Freeman and Co., 1988.Google Scholar
  97. 97.
    Frazzetta TH. Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls. J Mammal 1968;125:145–158.Google Scholar
  98. 98.
    Elzanowski A, Galton PM. Braincase of Enaliornis, an early Cretaceous bird from England. Journal of Vertebrate Paleontology 1991;11(1):90–107.CrossRefGoogle Scholar
  99. 99.
    Zusi RL. Patterns of diversity in the avian skull. In: Hanken J, Hall BK, eds. The Skull, Vol 2. 1st ed. Chicago: University of Chicago Press, 1993:391–437.Google Scholar
  100. 100.
    Moore WJ. The Mammalian Skull, Vol 8. Cambridge: Cambridge University Press, 1981.Google Scholar
  101. 101.
    Novacek M. Patterns of diversity in the mammalian skull. In: Hanken J, Hall BK, eds. The Skull, Vol 2. Chicago: University of Chicago Press, 1993:438–545.Google Scholar
  102. 102.
    Striedter GF, Northcutt RG. Biological hierarchies and the concept of homology. Brain Behav Evol 1991;38(4–5):177–189.PubMedGoogle Scholar
  103. 103.
    Jollie M. Segment theory and the homologizing of cranial bones. American Naturalist 1981;118:785–802.CrossRefGoogle Scholar
  104. 104.
    Broom R. On the mammalian presphenoid and mesethmoid bones. Proc Zool Soc Lond 1926;17:257–264.Google Scholar
  105. 105.
    Kesteven HL. The osteogenesis of the base of the saurian cranium and a search for the parasphenoid bone. Proc Linn Soc N S W 1940;65:447–467.Google Scholar
  106. 106.
    Kuhn H, Zeller U. The Cavum epitericum in monotremes and therian mammals. In: Kuhn H, Zeller U, eds. Morphogenesis of the Mammalian Skull, Vol 13. Hamburg: Verlag Paul Parey, 1987:51–70.Google Scholar
  107. 107.
    Smith KK, Schneider RA. Have gene knockouts caused evolutionary reversals in the mammalian first arch? BioEssays 1998;20(3):245–255.PubMedCrossRefGoogle Scholar
  108. 108.
    Schneider RA. Neural crest can form cartilages normally derived from mesoderm during development of the avian head skeleton. Dev Biol 1999;208(2):441–455.PubMedCrossRefGoogle Scholar
  109. 109.
    Presley R, Steel FLD. On the homology of the alisphenoid. J Anat 1976;121:441–459.Google Scholar
  110. 110.
    Presley R. Alisphenoid equivalents in placentals, marsupials, monotremes and fossils. Nature 1981;294(5842):668–670.CrossRefGoogle Scholar
  111. 111.
    Maier W. Ala temporalis and alisphenoid in therian mammals. Vienna: Paper presented at: Trends in Vertebrate Morphology: Proceedings of the 2nd International Symposium on Vertebrate Morphology (1986), 1989.Google Scholar
  112. 112.
    Rieppel O. The homology of the laterosphenoid bone in snakes. Herpetologica 1976;32:426–429.Google Scholar
  113. 113.
    Thompson KS. Segmentation, the adult skull, and the problem of homology. In: Hanken J, Hall BK, eds. The Skull, Vol 2. Chicago: University of Chicago Press, 1993:36–68.Google Scholar
  114. 114.
    Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn 2000;219(4):472–485.PubMedCrossRefGoogle Scholar
  115. 115.
    Ridgway EB, Weiner HL. Skull deformities. Pediatr Clin North Am 2004;51(2):359–387.PubMedCrossRefGoogle Scholar
  116. 116.
    Schneider RA, Hu D, Helms JA. From head to toe: Conservation of molecular signals regulating limb and craniofacial morphogenesis. Cell Tissue Res 1999;296(1):103–109.PubMedCrossRefGoogle Scholar
  117. 117.
    Schneider RA, Hu D, Rubenstein JL et al. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001;128(14):2755–2767.PubMedGoogle Scholar
  118. 118.
    Cordero DR, Schneider RA, Helms JA. Morphogenesis of the Face. In: Lin KY, Ogle RC, Jane JA, eds. Craniofacial Surgery: Science and Surgical Technique. Philadelphia: W B Saunders Company, 2002:75–83.Google Scholar
  119. 119.
    Hu D, Marcucio RS, Helms JA. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 2003;130(9):1749–1758.PubMedCrossRefGoogle Scholar
  120. 120.
    Cordero D, Marcucio R, Hu D et al. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest 2004;114(4):485–494.PubMedCrossRefGoogle Scholar
  121. 121.
    Schowing J. Influence inductrice de l’encéphale embryonnaire sur le développement du crâne chez le Poulet. J Embryol Exp Morphol 1968;19(1):9–32.PubMedGoogle Scholar
  122. 122.
    Schowing J. Inductive influence of the embryonic brain on the development of the skull in the chicken. I. Influence of excision of the anterior nervous area on cranial development. J Embryol Exp Morphol 1968;19(1):9–22.PubMedGoogle Scholar
  123. 123.
    Tyler MS. Development of the frontal bone and cranial meninges in the embryonic chick: An experimental study of tissue interactions. Anat Rec 1983;206(1):61–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Le Douarin NM, Teillet MM. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 1974;41:162–184.PubMedCrossRefGoogle Scholar
  125. 125.
    Chiakulas JJ. The specificity and differential fusion of cartilage derived from mesoderm and mesec-toderm. J Exp Zool 1957;136:287–300.PubMedCrossRefGoogle Scholar
  126. 126.
    Fyfe DM, Hall BK. Lack of association between cartilages of different embryological origins when maintained in vitro. Am J Anat 1979;154:485–495.PubMedCrossRefGoogle Scholar
  127. 127.
    Noden DM. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 1989;140(4):1097–1103.PubMedGoogle Scholar
  128. 128.
    Noden DM. Origins and assembly of avian embryonic blood vessels. Ann NY Acad Sci 1990;588:236–249.PubMedCrossRefGoogle Scholar
  129. 129.
    Noden DM. Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 1991;11(4):192–213.PubMedGoogle Scholar
  130. 130.
    Ruberte J, Carretero A, Navarro M et al. Morphogenesis of blood vessels in the head muscles of avian embryo: Spatial, temporal, and VEGF expression analyses. Dev Dyn 2003;227(4):470–483.PubMedCrossRefGoogle Scholar
  131. 131.
    Haggstrom AN, Lammer EJ, Schneider RA et al. Patterns of infantile hemangiomas: New clues to hemangioma pathogenesis and embryonic facial development. Pediatrics 2006;in press.Google Scholar
  132. 132.
    Tzahor E, Kempf H, Mootoosamy RC et al. Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 2003;17(24):3087–3099.PubMedCrossRefGoogle Scholar
  133. 133.
    Trainor PA, Krumlauf R. Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 2001;13(6):698–705.PubMedCrossRefGoogle Scholar
  134. 134.
    Santagati F, Minoux M, Ren SY et al. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development 2005;132(22):4927–4936.PubMedCrossRefGoogle Scholar
  135. 135.
    Borue X, Noden DM. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development 2004;131(16):3967–3980.PubMedCrossRefGoogle Scholar
  136. 136.
    Spemann H. Embryonic development and induction. New Haven: Yale University Press, 1938.Google Scholar
  137. 137.
    Olivera-Martinez I, Viallet JP, Michon F et al. The different steps of skin formation in vertebrates. Int J Dev Biol 2004;48(2–3):107–115.PubMedCrossRefGoogle Scholar
  138. 138.
    Kuroda H, Wessely O, De Robertis EM. Neural induction in Xenopus: Requirement for ectoder-mal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2004;2(5):E92.PubMedCrossRefGoogle Scholar
  139. 139.
    Noden DM. An analysis of the migratory behavior of avian cephalic neural crest cells. Dev Biol 1975;42:106–130.PubMedCrossRefGoogle Scholar
  140. 140.
    Couly G, Grapin-Botton A, Coltey P et al. Determination of the identity of the derivatives of the cephalic neural crest: Incompatibility between Hox gene expression and lower jaw development. Development 1998;125(17):3445–3459.PubMedGoogle Scholar
  141. 141.
    Nakamura H, Katahira T, Matsunaga E et al. Isthmus organizer for midbrain and hindbrain development. Brain Res Brain Res Rev 2005;49(2):120–126.PubMedCrossRefGoogle Scholar
  142. 142.
    Alvarado-Mallart RM. The chick/quail transplantation model: Discovery of the isthmic organizer center. Brain Res Brain Res Rev 2005;49(2):109–113.PubMedCrossRefGoogle Scholar
  143. 143.
    Trainor PA, Ariza-McNaughton L, Krumlauf R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 2002;295(5558):1288–1291.PubMedCrossRefGoogle Scholar
  144. 144.
    Trainor P, Krumlauf R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2000;2(2):96–102.PubMedCrossRefGoogle Scholar
  145. 145.
    Gendron-Maguire M, Mallo M, Zhang M et al. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993;75(7):1317–1331.PubMedCrossRefGoogle Scholar
  146. 146.
    Rijli FM, Mark M, Lakkaraju S et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993;75(7):1333–1349.PubMedCrossRefGoogle Scholar
  147. 147.
    Grammatopoulos GA, Bell E, Toole L et al. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 2000;127(24):5355–5365.PubMedGoogle Scholar
  148. 148.
    Pasqualetti M, Ori M, Nardi I et al. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 2000;127(24):5367–5378.PubMedGoogle Scholar
  149. 149.
    Creuzet S, Couly G, Vincent C et al. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 2002;129(18):4301–4313.PubMedGoogle Scholar
  150. 150.
    Couly G, Creuzet S, Bennaceur S et al. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 2002;129(4):1061–1073.PubMedGoogle Scholar
  151. 151.
    Le Douarin NM, Creuzet S, Couly G et al. Neural crest cell plasticity and its limits. Development 2004;131(19):4637–4650.PubMedCrossRefGoogle Scholar
  152. 152.
    Cerny R, Meulemans D, Berger J et al. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev Biol 2004;266(2):252–269.PubMedCrossRefGoogle Scholar
  153. 153.
    Shigetani Y, Nobusada Y, Kuratani S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: Epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol 2000;228(1):73–85.PubMedCrossRefGoogle Scholar
  154. 154.
    Ladher RK, Wright TJ, Moon AM et al. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 2005;19(5):603–613.PubMedCrossRefGoogle Scholar
  155. 155.
    Helms JA, Schneider RA. Cranial skeletal biology. Nature 2003;423(6937):326–331.PubMedCrossRefGoogle Scholar
  156. 156.
    Crump JG, Maves L, Lawson ND et al. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development 2004;131(22):5703–5716.PubMedCrossRefGoogle Scholar
  157. 157.
    Walshe J, Mason I. Fgf signalling is required for formation of cartilage in the head. Dev Biol 2003;264(2):522–536.PubMedCrossRefGoogle Scholar
  158. 158.
    David NB, Saint-Etienne L, Tsang M et al. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development 2002;129(19):4457–4468.PubMedGoogle Scholar
  159. 159.
    Graham A, Begbie J, McGonnell I. Significance of the cranial neural crest. Dev Dyn 2004;229(1):5–13.PubMedCrossRefGoogle Scholar
  160. 160.
    Lee SH, Fu KK, Hui JN et al. Noggin and retinoic acid transform the identity of avian facial prominences. Nature 2001;414(6866):909–912.PubMedCrossRefGoogle Scholar
  161. 161.
    Song Y, Hui JN, Fu KK et al. Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton. Dev Biol 2004;276(2):313–329.PubMedCrossRefGoogle Scholar
  162. 162.
    Abzhanov A, Protas M, Grant BR et al. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 2004;305(5689):1462–1465.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu P, Jiang TX, Suksaweang S et al. Molecular shaping of the beak. Science 2004;3O5(5689):1465–1466.CrossRefGoogle Scholar
  164. 164.
    Andres G. Untersuchungen an Chimären von Triton und Bombinator. Genetica 1949;24:387–534.CrossRefGoogle Scholar
  165. 165.
    Wagner G. Untersuchungen an Bombinator-Triton-Chimaeren. Roux’ Archiv für Entwicklungsmechanik der Organismen 1959;151:136–158.CrossRefGoogle Scholar
  166. 166.
    Sohal GS. Effects of reciprocal forebrain transplantation on motility and hatching in chick and duck embryos. Brain Res 1976;113(1):35–43.PubMedCrossRefGoogle Scholar
  167. 167.
    Yamashita T, Sohal GS. Development of smooth and skeletal muscle cells in the iris of the domestic duck, chick and quail. Cell Tissue Res 1986;244(1):121–131.PubMedCrossRefGoogle Scholar
  168. 168.
    Schneider RA, Helms JA. The cellular and molecular origins of beak morphology. Science 2003;299(5606):565–568.PubMedCrossRefGoogle Scholar
  169. 169.
    Tucker AS, Lumsden A. Neural crest cells provide species-specific patterning information in the developing branchial skeleton. Evol Dev 2004;6(1):32–40.PubMedCrossRefGoogle Scholar
  170. 170.
    Eames BF, Schneider RA. Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development. Development 2005;132(7):1499–1509.PubMedCrossRefGoogle Scholar
  171. 171.
    Schneider RA. Developmental mechanisms facilitating the evolution of bills and quills. J Anat 2005;207(5):563–573.PubMedCrossRefGoogle Scholar
  172. 172.
    Depew MJ, Lufkin T, Rubenstein JL. Specification of jaw subdivisions by Dlx genes. Science 2002;298(5592):381–385.PubMedCrossRefGoogle Scholar
  173. 173.
    Noden DM, Francis-West KP. The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 2006;in press.Google Scholar
  174. 174.
    Northcutt RG. A Reassessment of goodrich’s model of cranial nerve phylogeny. Acta Anat 1993;148:71–80.PubMedCrossRefGoogle Scholar
  175. 175.
    Francis-West P, Ladher R, Barlow A et al. Signalling interactions during facial development. Mech Dev 1998;75(1–2):3–28.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2006

Authors and Affiliations

  1. 1.Department of Biomedical Sciences College of Veterinary MedicineCornell UniversityIthacaUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations