Profilin, an Essential Control Element for Actin Polymerization

  • Roger Karlsson
  • Uno Lindberg
Part of the Molecular Biology Intelligence Unit book series (MBIU)


This chapter reviews some aspects of the biochemistry and cellular function of profilin, focussing on its role as a control component of actin polymerization. Signalling-dependent changes in cell behaviour are direct consequences of a force-generating remodelling of the actin microfilament system at the inner surface of the plasma membrane. Characteristic for this sub-membraneous region is the enrichment of actin filaments in highly ordered bundles and sheets of filaments. These filaments, which have their fast polymerizing (+)-ends facing the lipid bilayer, are under constant turnover, with ATP-containing actin monomers being added at their (+)-ends, and ADP-actin monomers dissociating from the (−)-ends in a treadmilling process regulated by a number of actin-binding proteins. Here, profilin comes into play as one of the key regulators of actin filament formation. The protrusive surface activity, typically seen after receptor stimulation, is caused by local incorporation of actin from profilin-actin into the ends of growing filaments of filopodia and lamellipodia. Thus, the function of profilin is primarily integrated with the force-generating microfilament apparatus at the cell periphery. In addition to actin, profilin also binds polyphosphoinositides and proline-rich ligands.


Actin Filament Spinal Muscular Atrophy Actin Polymerization Actin Assembly Actin ATPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindberg MU. Crystallization from calf spleen of two inhibitors of deoxyribonuclease I. J Biol Chem 1966; 241(5):1246–1249.PubMedGoogle Scholar
  2. 2.
    Lindberg U. Studies on the complex formation between deoxyribonuclease I and spleen inhibitor II. Biochemistry 1967; 6(1):343–347.PubMedCrossRefGoogle Scholar
  3. 3.
    Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 1974; 71(12):4742–4746.PubMedCrossRefGoogle Scholar
  4. 4.
    Carlsson L, Nystrom LE, Lindberg U et al. Crystallization of a nonmuscle actin. J Mol Biol 1976; 105(3):353–366.PubMedCrossRefGoogle Scholar
  5. 5.
    Carlsson L, Nystrom LE, Sundkvist I et al. Actin polymerizability is influenced by profilin, a low molecular weight protein in nonmuscle cells. J Mol Biol 1977; 115(3):465–483.PubMedCrossRefGoogle Scholar
  6. 6.
    Tilney LG. The role of nonmuscle cell motility. In: Inoué S, Stephens RE, eds. Molecules and Cell Movement. New York: Raven Press, 1975:339–388.Google Scholar
  7. 7.
    Tilney LG. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: A storage form of actin. J Cell Biol 1976; 69(1):73–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Tilney LG, Bonder EM, Coluccio LM et al. Actin from Thyone sperm assembles on only one end of an actin filament: A behavior regulated by profilin. J Cell Biol 1983; 97(1):112–124.PubMedCrossRefGoogle Scholar
  9. 9.
    Reichstein E, Korn ED. Acanthamoeba profilin. A protein of low molecular weight from Acanpthamoeba castellanii that inhibits actin nucleation. J Biol Chem 1979; 254(13):6174–6179.PubMedGoogle Scholar
  10. 10.
    Tobacman LS, Korn ED. The regulation of actin polymerization and the inhibition of monomeric actin ATPase activity by Acanthamoeba profilin. J Biol Chem 1982; 257(8):4166–4170.PubMedGoogle Scholar
  11. 11.
    Markey F, Persson T, Lindberg U. Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor. Cell 1981; 23(1):145–153.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollard TD, Mooseker MS. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol 1981; 88(3):654–659.PubMedCrossRefGoogle Scholar
  13. 13.
    Markey F, Larsson H, Weber K et al. Nucleation of actin polymerization from profilactin. Opposite effects of different nuclei. Biochim Biophys Acta 1982; 704(1):43–51.PubMedGoogle Scholar
  14. 14.
    Pollard TD, Cooper JA. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 1984; 23(26):6631–6641.PubMedCrossRefGoogle Scholar
  15. 15.
    Pring M, Weber A, Bubb MR. Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 1992; 31(6):1827–1836.PubMedCrossRefGoogle Scholar
  16. 16.
    Schutt CE, Myslik JC, Rozycki MD et al. The structure of crystalline profilin-beta-actin. Nature 1993; 365(6449):810–816.PubMedCrossRefGoogle Scholar
  17. 17.
    Cedergren-Zeppezauer ES, Goonesekere NC, Rozycki MD et al. Crystallization and structure determination of bovine profilin at 2.0 A resolution. J Mol Biol 1994; 240(5):459–475.PubMedCrossRefGoogle Scholar
  18. 18.
    Balasubramanian MK, Hirani BR, Burke JD et al. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J Cell Biol 1994; 125(6):1289–1301.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992; 69(1): 173–184.PubMedCrossRefGoogle Scholar
  20. 20.
    Witke W, Sutherland JD, Sharpe A et al. Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci USA 2001; 98(7):3832–3836.PubMedCrossRefGoogle Scholar
  21. 21.
    Kandasamy MK, McKinney EC, Meagher RB. Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motil Cytoskeleton 2002; 52(1):22–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Witke W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 2004; 14(8):461–469.PubMedCrossRefGoogle Scholar
  23. 23.
    Honore B, Madsen P, Andersen AH et al. Cloning and expression of a novel human profilin variant, profilin II. FEBS Lett 1993; 330(2):151–155.PubMedCrossRefGoogle Scholar
  24. 24.
    Witke W, Podtelejnikov AV, Di Nardo A et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 1998; 17(4):967–976.PubMedCrossRefGoogle Scholar
  25. 25.
    Di Nardo A, Gareus R, Kwiatkowski D et al. Alternative splicing of the mouse profilin II gene generates functionally different profilin isoforms. J Cell Sci 2000; 113 (Pt 21):3795–3803.PubMedGoogle Scholar
  26. 26.
    Lambrechts A, Braun A, Jonckheere V et al. Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 2000; 20(21):8209–8219.PubMedCrossRefGoogle Scholar
  27. 27.
    Machesky LM, Cole NB, Moss B et al. Vaccinia virus expresses a novel profilin with a higher affinity for polyphosphoinositides than actin. Biochemistry 1994; 33(35): 10815–10824.PubMedCrossRefGoogle Scholar
  28. 28.
    Braun A, Aszodi A, Hellebrand H et al. Genomic organization of profilin-III and evidence for a transcript expressed exclusively in testis. Gene 2002; 283(1–2):219–225.PubMedCrossRefGoogle Scholar
  29. 29.
    Obermann H, Raabe I, Balvers M et al. Novel testis-expressed profilin IV associated with acrosome biogenesis and spermatid elongation. Mol Hum Reprod 2005; 11(1):53–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol 2006; 117(1):141–147.PubMedCrossRefGoogle Scholar
  31. 31.
    Valenta R, Duchene M, Ebner C et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med 1992; 175(2):377–385.PubMedCrossRefGoogle Scholar
  32. 32.
    Yarovinsky F, Zhang D, Andersen JF et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005; 308(5728):1626–1629.PubMedCrossRefGoogle Scholar
  33. 33.
    Rothkegel M, Mayboroda O, Rohde M et al. Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. J Cell Sci 1996; 109 (Pt 1):83–90.PubMedGoogle Scholar
  34. 34.
    Karakesisoglou I, Schleicher M, Gibbon BC et al. Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton 1996; 34(1):36–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Eads JC, Mahoney NM, Vorobiev S et al. Structure determination and characterization of Saccharomyces cerevisiae profilin. Biochemistry 1998; 37(32): 11171–11181.PubMedCrossRefGoogle Scholar
  36. 36.
    Fedorov AA, Magnus KA, Graupe MH et al. X-ray structures of isoforms of the actin-binding protein profilin that differ in their affinity for phosphatidylinositol phosphates. Proc Natl Acad Sci USA 1994; 91(18):8636–8640.PubMedCrossRefGoogle Scholar
  37. 37.
    Nodelman IM, Bowman GD, Lindberg U et al. X-ray structure determination of human profilin II: A comparative structural analysis of human profilins. J Mol Biol 1999; 294(5):1271–1285.PubMedCrossRefGoogle Scholar
  38. 38.
    Thorn KS, Christensen HE, Shigeta R et al. The crystal structure of a major allergen from plants. Structure 1997; 5(1): 19–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Hajkova L, Bjorkegren Sjogren C, Korenbaum E et al. Characterization of a mutant profilin with reduced actin-binding capacity: Effects in vitro and in vivo. Exp Cell Res 1997; 234(1):66–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Korenbaum E, Nordberg P, Bjorkegren-Sjogren C et al. The role of profilin in actin polymerization and nucleotide exchange. Biochemistry 1998; 37(26):9274–9283.PubMedCrossRefGoogle Scholar
  41. 41.
    Qian C, Zhang Q, Wang X et al. Structure of the adaptor protein p14 reveals a profilin-like fold with distinct function. J Mol Biol 2005; 347(2):309–321.PubMedCrossRefGoogle Scholar
  42. 42.
    Rossi V, Banfield DK, Vacca M et al. Longins and their longin domains: Regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 2004; 29(12):682–688.PubMedCrossRefGoogle Scholar
  43. 43.
    Lindberg U, Schutt CE, Hellsten E et al. The use of poly(L-proline)-Sepharose in the isolation of profilin and profilactin complexes. Biochim Biophys Acta 1988; 967(3):391–400.PubMedGoogle Scholar
  44. 44.
    Schüler H, Karlsson R, Lindberg U. Purification of nonmuscle actin. In: Celis J, ed. Cell Biology: A Laboratory Handbook, Vol I. 3th ed. London: Elsevier Science, 2006:165–171.Google Scholar
  45. 45.
    Reinhard M, Giehl K, Abel K et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 1995; 14(8):1583–1589.PubMedGoogle Scholar
  46. 46.
    Mahoney NM, Janmey PA, Almo SC. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nat Struct Biol 1997; 4(11):953–960.PubMedCrossRefGoogle Scholar
  47. 47.
    Mahoney NM, Rozwarski DA, Fedorov E et al. Profilin binds proline-rich ligands in two distinct amide backbone orientations. Nat Struct Biol 1999; 6(7):666–671.PubMedCrossRefGoogle Scholar
  48. 48.
    Bjorkegren C, Rozycki M, Schutt CE et al. Mutagenesis of human profilin locates its poly(L-proline)-binding site to a hydrophobic patch of aromatic amino acids. FEBS Lett 1993; 333(1–2):123–126.PubMedCrossRefGoogle Scholar
  49. 49.
    Lambrechts A, Jonckheere V, Dewitte D et al. Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC Biochem 2002; 3:12.PubMedCrossRefGoogle Scholar
  50. 50.
    Skare P, Karlsson R. Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 2002; 522(1–3):119–124.PubMedCrossRefGoogle Scholar
  51. 51.
    Malm B, Larsson H, Lindberg U. The profilin-actin complex: Further characterization of profilin and studies on the stability of the complex. J Muscle Res Cell Motil 1983; 4(5):569–588.PubMedCrossRefGoogle Scholar
  52. 52.
    Kasina S, Rizwani W, Radhika KV et al. Nitration of profilin effects its interaction with poly (L-proline) and actin. J Biochem (Tokyo) 2005; 138(6):687–695.PubMedCrossRefGoogle Scholar
  53. 53.
    Bjorkegren-Sjogren C, Korenbaum E, Nordberg P et al. Isolation and characterization of two mutants of human profilin I that do not bind poly(L-proline). FEBS Lett 1997; 418(3):258–264.PubMedCrossRefGoogle Scholar
  54. 54.
    Bjorkegren C. Profilin in cell motility and signal transduction /Ph.D.-thesis, ISBN 91-7153-646-9. Stockholm: Department of Cell Biology, Stockholm University, 1997.Google Scholar
  55. 55.
    Raghunathan V, Mowery P, Rozycki M et al. Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate. FEBS Lett 1992; 297(1–2):46–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 1985; 314(6010):472–474.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaiser DA, Pollard TD. Characterization of actin and poly-L-proline binding sites of Acanthamoeba profilin with monoclonal antibodies and by mutagenesis. J Mol Biol 1996; 256(1):89–107.PubMedCrossRefGoogle Scholar
  58. 58.
    De Corte V, Gettemans J, Vandekerckhove J. Phosphatidylinositol 4,5-bisphosphate specifically stimulates PP60(c-src) catalyzed phosphorylation of gelsolin and related actin-binding proteins. FEBS Lett 1997; 401(2–3):191–196.PubMedCrossRefGoogle Scholar
  59. 59.
    Hansson A, Skoglund G, Lassing I et al. Protein kinase C-dependent phosphorylation of profilin is specifically stimulated by phosphatidylinositol bisphosphate (PIP2). Biochem Biophys Res Commun 1988; 150(2):526–531.PubMedCrossRefGoogle Scholar
  60. 60.
    Sathish K, Padma B, Munugalavadla V et al. Phosphorylation of profilin regulates its interaction with actin and poly (L-proline). Cell Signal 2004; 16(5):589–596.PubMedCrossRefGoogle Scholar
  61. 61.
    Singh SS, Chauhan A, Murakami N et al. Phosphoinositide-dependent in vitro phosphorylation of profilin by protein kinase C. Phospholipid specificity and localization of the phosphorylation site. Recept Signal Transduct 1996; 6(2):77–86.PubMedGoogle Scholar
  62. 62.
    Limmongkon A, Giuliani C, Valenta R et al. MAP kinase phosphorylation of plant profilin. Biochem Biophys Res Commun 2004; 324(1):382–386.PubMedCrossRefGoogle Scholar
  63. 63.
    Guillen G, Valdes-Lopez V, Noguez R et al. Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant J 1999; 19(5):497–508.PubMedCrossRefGoogle Scholar
  64. 64.
    Kabsch W, Mannherz HG, Suck D et al. Atomic structure of the actin: DNase I complex. Nature 1990; 347(6288):37–44.PubMedCrossRefGoogle Scholar
  65. 65.
    McLaughlin PJ, Gooch JT, Mannherz HG et al. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 1993; 364(6439):685–692.PubMedCrossRefGoogle Scholar
  66. 66.
    Vorobiev S, Strokopytov B, Drubin DG et al. The structure of nonvertebrate actin: Implications for the ATP hydrolytic mechanism. Proc Natl Acad Sci USA 2003; 100(10):5760–5765.PubMedCrossRefGoogle Scholar
  67. 67.
    Chik JK, Lindberg U, Schutt CE. The structure of an open state of beta-actin at 2.65 A resolution. J Mol Biol 1996; 263(4):607–623.PubMedCrossRefGoogle Scholar
  68. 68.
    Otterbein LR, Graceffa P, Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science 2001; 293(5530):708–711.PubMedCrossRefGoogle Scholar
  69. 69.
    Mockrin SC, Korn ED. Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry 1980; 19(23):5359–5362.PubMedCrossRefGoogle Scholar
  70. 70.
    Nyman T, Page R, Schutt CE et al. A cross-linked profilin-actin heterodimer interferes with elongation at the fast-growing end of F-actin. J Biol Chem 2002; 277(18):15828–15833.PubMedCrossRefGoogle Scholar
  71. 71.
    Schüler H, Karlsson R, Schutt CE et al. The connection between actin ATPase and polymerization. In: Bittar EE, ed. Advances in Molcecular and Cellular Biology, Vol 37. Amsterdam: Elsevier, 2006.Google Scholar
  72. 72.
    Hajkova L, Nyman T, Lindberg U et al. Effects of cross-linked profilin:beta/gamma-actin on the dynamics of the microfilament system in cultured cells. Exp Cell Res 2000; 256(1):112–121.PubMedCrossRefGoogle Scholar
  73. 73.
    Suetsugu S, Miki H, Takenawa T. The essential role of profilin in the assembly of actin for microspike formation. EMBO J 1998; 17(22):6516–6526.PubMedCrossRefGoogle Scholar
  74. 74.
    Suetsugu S, Miki H, Takenawa T. Distinct roles of profilin in cell morphological changes: Microspikes, membrane ruffles, stress fibers, and cytokinesis. FEBS Lett 1999; 457(3):470–474.PubMedCrossRefGoogle Scholar
  75. 75.
    Janke J, Schluter K, Jandrig B et al. Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med 2000; 191(10):1675–1686.PubMedCrossRefGoogle Scholar
  76. 76.
    Roy P, Jacobson K. Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 2004; 57(2):84–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Wittenmayer N, Jandrig B, Rothkegel M et al. Tumor suppressor activity of profilin requires a functional actin binding site. Mol Biol Cell 2004; 15(4):1600–1608.PubMedCrossRefGoogle Scholar
  78. 78.
    Chaudhary A, Chen J, Gu QM et al. Probing the phosphoinositide 4,5-bisphosphate binding site of human profilin I. Chem Biol 1998; 5(5):273–281.PubMedCrossRefGoogle Scholar
  79. 79.
    Haarer BK, Petzold AS, Brown SS. Mutational analysis of yeast profilin. Mol Cell Biol 1993; 13(12):7864–7873.PubMedGoogle Scholar
  80. 80.
    Kovar DR, Drobak BK, Collings DA et al. The characterization of ligand-specific maize (Zea mays) profilin mutants. Biochem J 2001; 358 (Pt 1):49–57.PubMedCrossRefGoogle Scholar
  81. 81.
    Lu PJ, Shieh WR, Rhee SG et al. Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochemistry 1996; 35(44):14027–14034.PubMedCrossRefGoogle Scholar
  82. 82.
    Sohn RH, Chen J, Koblan KS et al. Localization of a binding site for phosphatidylinositol 4,5-bisphosphate on human profilin. J Biol Chem 1995; 270(36):21114–21120.PubMedCrossRefGoogle Scholar
  83. 83.
    Hartwig JH, Bokoch GM, Carpenter CL et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995; 82(4):643–653.PubMedCrossRefGoogle Scholar
  84. 84.
    Lassing I, Lindberg U. Polyphosphoinositide synthesis in platelets stimulated with low concentrations of thrombin is enhanced before the activation of phospholipase C. FEBS Lett 1990; 262(2):231–233.PubMedCrossRefGoogle Scholar
  85. 85.
    Carlsson L, Markey F, Blikstad I et al. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci USA 1979; 76(12):6376–6380.PubMedCrossRefGoogle Scholar
  86. 86.
    Lassing I, Lindberg U. Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp Cell Res 1988; 174(1):1–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Goldschmidt-Clermont PJ, Kim JW, Machesky LM et al. Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 1991; 251(4998):1231–1233.PubMedCrossRefGoogle Scholar
  88. 88.
    Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ et al. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990; 247(4950):1575–1578.PubMedCrossRefGoogle Scholar
  89. 89.
    Singh SS, Chauhan A, Murakami N et al. Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochemistry 1996; 35(51):16544–16549.PubMedCrossRefGoogle Scholar
  90. 90.
    Han J, Luby-Phelps K, Das B et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998; 279(5350):558–560.PubMedCrossRefGoogle Scholar
  91. 91.
    Jaffe AB, Hall A. Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21:247–269.PubMedCrossRefGoogle Scholar
  92. 92.
    Ren XD, Schwartz MA. Regulation of inositol lipid kinases by Rho and Rac. Curr Opin Genet Dev 1998; 8(1):63–67.PubMedCrossRefGoogle Scholar
  93. 93.
    Ostrander DB, Gorman JA, Carman GM. Regulation of profilin localization in Saccharomyces cerevisiae by phosphoinositide metabolism. J Biol Chem 1995; 270(45):27045–27050.PubMedCrossRefGoogle Scholar
  94. 94.
    Buss F, Temm-Grove C, Henning S et al. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil Cytoskeleton 1992; 22(1):51–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Mayboroda O, Schluter K, Jockusch BM. Differential colocalization of profilin with microfilaments in PtK2 cells. Cell Motil Cytoskeleton 1997; 37(2): 166–177.PubMedCrossRefGoogle Scholar
  96. 96.
    Giesemann T, Rathke-Hartlieb S, Rothkegel M et al. A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J Biol Chem 1999; 274(53):37908–37914.PubMedCrossRefGoogle Scholar
  97. 97.
    Skare P, Kreivi JP, Bergstrom A, Karlsson R. Profilin I colocalizes with speckles and Cajal bodies: A possible role in pre-mRNA splicing. Exp Cell Res 2003; 286(1): 12–21.PubMedCrossRefGoogle Scholar
  98. 98.
    Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112(4):453–465.PubMedCrossRefGoogle Scholar
  99. 99.
    Machesky LM, Atkinson SJ, Ampe C et al. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 1994; 127(1):107–115.PubMedCrossRefGoogle Scholar
  100. 100.
    Mullins RD, Kelleher JF, Xu J et al. Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments. Mol Biol Cell 1998; 9(4):841–852.PubMedGoogle Scholar
  101. 101.
    Machesky LM, Mullins RD, Higgs HN et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci USA 1999; 96(7):3739–3744.PubMedCrossRefGoogle Scholar
  102. 102.
    Rohatgi R, Ma L, Miki H et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 1999; 97(2):221–231.PubMedCrossRefGoogle Scholar
  103. 103.
    Winter D, Lechler T, Li R. Activation of the yeast Arp2/3 complex by Beelp, a WASP-family protein. Curr Biol 1999; 9(9):501–504.PubMedCrossRefGoogle Scholar
  104. 104.
    Uruno T, Liu J, Zhang P et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 2001; 3(3):259–266.PubMedCrossRefGoogle Scholar
  105. 105.
    Frischknecht F, Way M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 2001; 11(1):30–38.PubMedCrossRefGoogle Scholar
  106. 106.
    Welch MD, Rosenblatt J, Skoble J et al. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 1998; 281(5373):105–108.PubMedCrossRefGoogle Scholar
  107. 107.
    Geese M, Schluter K, Rothkegel M et al. Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed. J Cell Sci 2000; 113 (Pt 8):1415–1426.PubMedGoogle Scholar
  108. 108.
    Grenklo S, Geese M, Lindberg U et al. A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes. EMBO Rep 2003; 4(5):523–529.PubMedCrossRefGoogle Scholar
  109. 109.
    Loisel TP, Boujemaa R, Pantaloni D et al. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 1999; 401(6753):613–616.PubMedCrossRefGoogle Scholar
  110. 110.
    Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 1998; 95(11):6181–6186.PubMedCrossRefGoogle Scholar
  111. 111.
    Bailly M, Ichetovkin I, Grant W et al. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr Biol 2001; 11(8):620–625.PubMedCrossRefGoogle Scholar
  112. 112.
    Blanchoin L, Amann KJ, Higgs HN et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 2000; 404(6781):1007–1011.PubMedCrossRefGoogle Scholar
  113. 113.
    Egile C, Rouiller I, Xu XP et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol 2005; 3(11):e383.PubMedCrossRefGoogle Scholar
  114. 114.
    Pantaloni D, Boujemaa R, Didry D et al. The Arp2/3 complex branches filament barbed ends: Functional antagonism with capping proteins. Nat Cell Biol 2000; 2(7):385–391.PubMedCrossRefGoogle Scholar
  115. 115.
    Volkmann N, Amann KJ, Stoilova-McPhie S et al. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 2001; 293(5539):2456–2459.PubMedCrossRefGoogle Scholar
  116. 116.
    Robinson RC, Turbedsky K, Kaiser DA et al. Crystal structure of Arp2/3 complex. Science 2001; 294(5547):1679–1684.PubMedCrossRefGoogle Scholar
  117. 117.
    Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 1999; 145(5):1009–1026.PubMedCrossRefGoogle Scholar
  118. 118.
    Svitkina TM, Verkhovsky AB, McQuade KM et al. Analysis of the actin-myosin II system in fish epidermal keratocytes: Mechanism of cell body trans location. J Cell Biol 1997; 139(2):397–415.PubMedCrossRefGoogle Scholar
  119. 119.
    Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 2000; 29:545–576.PubMedCrossRefGoogle Scholar
  120. 120.
    Hoglund AS, Karlsson R, Arro E et al. Visualization of the peripheral weave of microfilaments in glia cells. J Muscle Res Cell Motil 1980; 1(2):127–146.PubMedCrossRefGoogle Scholar
  121. 121.
    Small JV, Rinnerthaler G, Hinssen H. Organization of actin meshworks in cultured cells: The leading edge. Cold Spring Harb Symp Quant Biol 1982; 46 (Pt 2):599–611.PubMedGoogle Scholar
  122. 122.
    Lindberg U, Hoglund AS, Karlsson R. On the ultrastructural organization of the microfilament system and the possible role of profilactin. Biochimie 1981; 63(4):307–323.PubMedCrossRefGoogle Scholar
  123. 123.
    Svitkina TM, Verkhovsky AB, Borisy GG. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol 1995; 115(3):290–303.PubMedCrossRefGoogle Scholar
  124. 124.
    Le Clainche C, Pantaloni D, Carlier MF. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc Natl Acad Sci USA 2003; 100(11):6337–6342.PubMedCrossRefGoogle Scholar
  125. 125.
    Ichetovkin I, Grant W, Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 2002; 12(1):79–84.PubMedCrossRefGoogle Scholar
  126. 126.
    Blanchoin L, Pollard TD, Hitchcock-DeGregori SE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol 2001; 11(16):1300–1304.PubMedCrossRefGoogle Scholar
  127. 127.
    DesMarais V, Ghosh M, Eddy R et al. Cofilin takes the lead. J Cell Sci 2005; 118 (Pt 1):19–26.PubMedCrossRefGoogle Scholar
  128. 128.
    DesMarais V, Ichetovkin I, Condeelis J et al. Spatial regulation of actin dynamics: A tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115 (Pt 23):4649–4660.PubMedCrossRefGoogle Scholar
  129. 129.
    Hillberg L, Zhao-Rathje LS, Nyåkern-Meazza M et al. Tropomyosins are present in lamellipodia of motile cells. Eur J of Cell Biol 2006, (in press).Google Scholar
  130. 130.
    Di Nardo A, Cicchetti G, Falet H et al. Arp2/3 complex-deficient mouse fibroblasts are viable and have normal leading-edge actin structure and function. Proc Natl Acad Sci USA 2005; 102(45): 16263–16268.PubMedCrossRefGoogle Scholar
  131. 131.
    Yarar D, D’Alessio JA, Jeng RL et al. Motility determinants in WASP family proteins. Mol Biol Cell 2002; 13(11):4045–4059.PubMedCrossRefGoogle Scholar
  132. 132.
    Rottner K, Behrendt B, Small JV et al. VASP dynamics during lamellipodia protrusion. Nat Cell Biol 1999; 1(5):321–322.PubMedCrossRefGoogle Scholar
  133. 133.
    Zigmond SH. Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 2004; 16(1):99–105.PubMedCrossRefGoogle Scholar
  134. 134.
    Higashida C, Miyoshi T, Fujita A et al. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 2004; 303(5666):2007–2010.PubMedCrossRefGoogle Scholar
  135. 135.
    Kovar DR. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 2006; 18(1):11–17.PubMedCrossRefGoogle Scholar
  136. 136.
    Romero S, Le Clainche C, Didry D et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 2004; 119(3):419–429.PubMedCrossRefGoogle Scholar
  137. 137.
    Geese M, Loureiro JJ, Bear JE et al. Contribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 2002; 13(7):2383–2396.PubMedCrossRefGoogle Scholar
  138. 138.
    Grenklo S, Johansson T, Bertilson L et al. Anti-actin antibodies generated against profilin:actin distinguish between nonfilamentous and filamentous actin, and label cultured cells in a dotted pattern. Eur J Cell Biol 2004; 83(8):413–423.PubMedCrossRefGoogle Scholar
  139. 139.
    Dickinson RB, Purich DL. Clamped-filament elongation model for actin-based motors. Biophys J 2002; 82(2):605–617.PubMedCrossRefGoogle Scholar
  140. 140.
    Dickinson RB, Southwick FS, Purich DL. A direct-transfer polymerization model explains how the multiple profilin-binding sites in the actoclampin motor promote rapid actin-based motility. Arch Biochem Biophys 2002; 406(2):296–301.PubMedCrossRefGoogle Scholar
  141. 141.
    Ho HY, Rohatgi R, Lebensohn AM et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 2004; 118(2):203–216.PubMedCrossRefGoogle Scholar
  142. 142.
    Steffen A, Rottner K, Ehinger J et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J 2004; 23(4):749–759.PubMedCrossRefGoogle Scholar
  143. 143.
    Disanza A, Steffen A, Hertzog M et al. Actin polymerization machinery: The finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 2005; 62(9):955–970.PubMedCrossRefGoogle Scholar
  144. 144.
    Stradal TE, Rottner K, Disanza A et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol 2004; 14(6):303–311.PubMedCrossRefGoogle Scholar
  145. 145.
    Allen PC Actin filament uncapping localizes to ruffling lamellae and rocketing vesicles. Nat Cell Biol 2003; 5(11):972–979.PubMedCrossRefGoogle Scholar
  146. 146.
    Disanza A, Carlier MF, Stradal TE et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 2004; 6(12):1180–1188.PubMedCrossRefGoogle Scholar
  147. 147.
    Falck S, Paavilainen VO, Wear MA et al. Biological role and structural mechanism of twinfilin-capping protein interaction. EMBO J 2004; 23(15):3010–3019.PubMedCrossRefGoogle Scholar
  148. 148.
    Sun HQ, Yamamoto M, Mejillano M et al. Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 1999; 274(47):33179–33182.PubMedCrossRefGoogle Scholar
  149. 149.
    Wear MA, Cooper JA. Capping protein: New insights into mechanism and regulation. Trends Biochem Sci 2004; 29(8):418–428.PubMedCrossRefGoogle Scholar
  150. 150.
    Yang C, Pring M, Wear MA et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 2005; 9(2):209–221.PubMedCrossRefGoogle Scholar
  151. 151.
    Nyakern-Meazza M, Narayan K, Schutt CE et al. Tropomyosin and gelsolin cooperate in controlling the microfilament system. J Biol Chem 2002; 277(32):28774–28779.PubMedCrossRefGoogle Scholar
  152. 152.
    Evangelista M, Pruyne D, Amberg DC et al. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4(3):260–269.PubMedCrossRefGoogle Scholar
  153. 153.
    Paavilainen VO, Bertling E, Falck S et al. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 2004; 14(7):386–394.PubMedCrossRefGoogle Scholar
  154. 154.
    Zicha D, Dobbie IM, Holt MR et al. Rapid actin transport during cell protrusion. Science 2003; 300(5616):142–145.PubMedCrossRefGoogle Scholar
  155. 155.
    Berg JS, Cheney RE. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 2002; 4(3):246–250.PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang H, Berg JS, Li Z et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 2004; 6(6):523–531.PubMedCrossRefGoogle Scholar
  157. 157.
    Briese M, Esmaeili B, Sattelle DB. Is spinal muscular atrophy the result of defects in motor neuron processes? Bioessays 2005; 27(9):946–957.PubMedCrossRefGoogle Scholar
  158. 158.
    Monani UR. Spinal muscular atrophy: A deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 2005; 48(6):885–896.PubMedCrossRefGoogle Scholar
  159. 159.
    Boronenkov IV, Loijens JC, Umeda M et al. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 1998; 9(12):3547–3560.PubMedGoogle Scholar
  160. 160.
    Osborne SL, Thomas CL, Gschmeissner S et al. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 2001; H4 (Pt 13):2501–2511.Google Scholar
  161. 161.
    Bettinger BT, Gilbert DM, Amberg DC. Actin up in the nucleus. Nat Rev Mol Cell Biol 2004; 5(5):410–415.PubMedCrossRefGoogle Scholar
  162. 162.
    Pederson T, Aebi U. Nuclear actin extends, with no contraction in sight. Mol Biol Cell 2005; 16(11):5055–5060.PubMedCrossRefGoogle Scholar
  163. 163.
    Stuven T, Hartmann E, Gorlich D. Exportin 6: A novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 2003; 22(21):5928–5940.PubMedCrossRefGoogle Scholar
  164. 164.
    Lederer M, Jockusch BM, Rothkegel M. Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 2005; 118 (Pt 2):331–341.PubMedCrossRefGoogle Scholar
  165. 165.
    Wills Z, Marr L, Zinn K et al. Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron 1999; 22(2):291–299.PubMedCrossRefGoogle Scholar
  166. 166.
    Neuhoff H, Sassoe-Pognetto M, Panzanelli P et al. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner. Eur J Neurosci 2005; 21(1): 15–25.PubMedCrossRefGoogle Scholar
  167. 167.
    Fischer M, Kaech S, Knutti D et al. Rapid actin-based plasticity in dendritic spines. Neuron 1998; 20(5):847–854.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang X, Kibschull M, Laue MM et al. Aczonin, a 550-kD putative scaffolding protein of presyn-aptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 1999; 147(1):151–162.PubMedCrossRefGoogle Scholar
  169. 169.
    Mammoto A, Sasaki T, Asakura T et al. Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 1998; 243(1):86–89.PubMedCrossRefGoogle Scholar
  170. 170.
    Miyagi Y, Yamashita T, Fukaya M et al. Delphilin: A novel PDZ and formin homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor delta 2 subunit. J Neurosci 2002; 22(3):803–814.PubMedGoogle Scholar
  171. 171.
    Giesemann T, Schwarz G, Nawrotzki R et al. Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: A possible link to the microfilament system. J Neurosci 2003; 23(23):8330–8339.PubMedGoogle Scholar
  172. 172.
    Reeve SP, Bassetto L, Genova GK et al. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 2005; 15(12):1156–1163.PubMedCrossRefGoogle Scholar
  173. 173.
    Gareus R, Di Nardo A, Rybin V et al. Mouse profilin 2 regulates endocytosis and competes with SH3-ligand binding to dynamin 1. J Biol Chem 2006; 281(5):2803–2811.PubMedCrossRefGoogle Scholar
  174. 174.
    Ackermann M, Matus A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 2003; 6(11):1194–1200.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Roger Karlsson
    • 1
  • Uno Lindberg
    • 2
  1. 1.Department of Cell BiologyStockholm UniversityStockholmSweden
  2. 2.Department of Cell Biology, Wenner-Gren InstituteStockholm UniversityStockholmSweden

Personalised recommendations