Advertisement

Abstract

Turmeric (Curcuma longa) is extensively used as a household remedy for various diseases. For the last few decades, work has been done to establish the biological activities and pharmacological actions of curcumin, the principle constituent of turmeric. Curcumin has proven to be beneficial in the prevention and treatment of a number of inflammatory diseases due to its anti-inflammatory activity.

Keywords

Arachidonic Acid Chlorogenic Acid Arachidonic Acid Metabolism Curcuma Longa Turmeric Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. World Health Organization, Health Report, 2006. Lyon: WHO Publications Press, 2006.Google Scholar
  2. 2.
    2. Chronic Disease Prevention. Center for Disease Control, Annual Report (2006).Google Scholar
  3. 3.
    3. W.C. Willett, M. J. Stampfer, B. A. Colditz, G. A. Rosner, and F. E. Speizer, Relation of meat, fat and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med 323, 1664–1672 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    4. J. D. Potter and K. Steinmatz, Vegetables, fruits and phytoestrogens as preventive agents. IARC Sci Publ 139, 61–90 (1995).Google Scholar
  5. 5.
    5. C. V. Rao and B. S. Reddy, NSAIDs and chemoprevention. Curr Cancer Drug Targets 4, 29–44 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    6. J. P. Collet, C. Sharpe, E. Belzile, J. F. Boivin, J. Hanley, and L. Abenhaim, Colorectal cancer prevention by non-steroidal anti-inflammatory drugs: Effects of dosage and timing. Br J Cancer 81, 62–68 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    7. S. R. Maxwell, R. A. Payne, G. D. Murray, and D. J. Webb, Selectivity of NSAIDs for COX-2 and cardiovascular outcome. Br J Clin Pharmacol 62(2), 243–245 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    8. D. M. Schreinemachers and R. B. Everson, Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5, 138–146 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    9. K. Kohli, J. Ali, M. J. Ansari, and Z. Raheman, Curcumin: A natural anti-inflammatory agent. Indian J Pharmacol 37, 141–147 (2005).CrossRefGoogle Scholar
  10. 10.
    10. H. H. Tonnesen, Chemistry of curcumin and curcuminoids. In: C.-T. Ho, C. Y. Lee, and M-T. Haung, eds. Phenolic Compounds in Food and their Effect of Health. Vol. 1: Analysis, Occurrence and Chemistry. ACS Symposium Series No. 506, pp. 143–153, Washington, DC: American Chemical Society, 1992. pp. 143–153.Google Scholar
  11. 11.
    11. R. C. Srimal and B. N. Dhawan, Pharmacology of diferuloylmethane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447–452 (1973).PubMedGoogle Scholar
  12. 12.
    12. H. P. T. Ammon and M. A. Wahl, Pharmacology of Curcuma longa. Planta Med 57, 1–7 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    13. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin, preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003).PubMedGoogle Scholar
  14. 14.
    14. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, Turmeric and curcumin: Biological actions and medicinal applications. Cur Sci 87, 44–53 (2004).Google Scholar
  15. 15.
    15. R. Arora, N. Basu, and V. Kapoor, Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res 59, 1289–1295 (1971).PubMedGoogle Scholar
  16. 16.
    16. R. C. Srimal, N. M. Khanna, and B. N. Dhawan, A preliminary report on anti inflammatory activity of curcumin. Int J Pharm 3, 10–13 (1971).Google Scholar
  17. 17.
    17. A. Mukhopadhyay, N. Basu, and N. Ghatak, Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12, 508–515 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    18. R. R. Satoskar, S. J. Shah, and S. G. Shenoy, Evaluation of anti-inflammatory property of curcumin in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 24, 651–654 (1986).PubMedGoogle Scholar
  19. 19.
    19. R. Maheshwari, A. K. Singh, J. Gaddopati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081–2087 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    20. T. H. Leu and M. C. Maa, The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem Anticancer Agents 2, 357–370 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    21. S. Shishodia, H. M. Amin, R. Lai, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70(5), 700–713 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    22. R. L. Thangapazham, S. Sharma, and R. Maheshwari, Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J 8, 443–449 (2006).CrossRefGoogle Scholar
  23. 23.
    23. W. L. Smith, R. M. Garavito, and D. L. DeWitt, Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271, 33,157–33,160 (1996).Google Scholar
  24. 24.
    24. J. Y. Jouzeau, B. Terlain, A. Abid, E. Nedelec, and P. Netter, Cyclo-oxygenase isoenzymes. How recent findings affect thinking about nonsteroidal anti-inflammatory drugs. Drugs 53, 563–582 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    25. J. Y. Fu, J. L. Masferrer, K. Seibert, A. Raz, and P. Needleman, The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem 265, 16,737–16,740 (1990).Google Scholar
  26. 26.
    26. K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52, 223–227 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    27. A. H. Conney, T. Lysz, T Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385–396 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    28. B. Joe and B. R. Lokesh, Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32, 1173–1180 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    29. H. P. Ammon, H. Safayhi, T. Mack, and J. Sabieraj, Mechanism of anti-inflammatory actions of curcumin and bowsellic acids. J Ethnopharmacol 38, 113–119 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    30. R. Srivastava, Inhibition of neutrophil response by curcumin. Agents Actions 28, 298–303 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    31. C. V. Rao, B. Simi, and B. S. Reddy, Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis 14, 2219–2225 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    32. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  33. 33.
    33. M.-T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  34. 34.
    34. M.-T. Huang, R. C. Smart, C.-Q. Wong, and A. H. Cooney, Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48, 5941–5946 (1998).Google Scholar
  35. 35.
    35. C. Ireson, S. Orr, D. J. Jones, R. Verschoyle, C. K. Lim, J. L. Luo, et al., Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61, 1058–1064 (2001).PubMedGoogle Scholar
  36. 36.
    36. R. S. Ramsewak, D. L. DeWitt, and M. G. Nair, Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 7, 303–308 (2000).PubMedGoogle Scholar
  37. 37.
    37. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex. Carcinogenesis 20, 445–451 (1999).PubMedCrossRefGoogle Scholar
  38. 38.
    38. A. Goel, C. R. Boland, and D. P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172, 111–118 (2001).PubMedCrossRefGoogle Scholar
  39. 39.
    39. H. Y. Kim, E. J. Park, E. H. Joe, and I. Jou, Curcumin suppresses Janus kinase–STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 171, 6072–6079 (2003).PubMedGoogle Scholar
  40. 40.
    40. Y. J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park KK, et al., Molecular mechanism underlying chemopreventive activities of anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Res 480, 243–268 (2001).PubMedGoogle Scholar
  41. 41.
    41. A. A. Nanji, K. Jokelainen, G. L. Tipoe, A. Rahemtulla, P. Thomas, and A. J. Dannenberg, Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol 284, 321–327 (2003).Google Scholar
  42. 42.
    42. S. S. Han, Y. S. Keum, H. I. Seo, and Y. L. Surh, Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 35, 337–342 (2002).PubMedGoogle Scholar
  43. 43.
    43. S. Shishodia, H. M. P. Potdar, C. G. Gairola, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: Correlation with suppression of COX-2, MMP->9 and cyclin D1. Carcinogenesis 24(7), 1269–1279 (2003).PubMedCrossRefGoogle Scholar
  44. 44.
    44. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24, 1515–1524 (2003).PubMedCrossRefGoogle Scholar
  45. 45.
    45. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 10, 1053–1062 (2003).CrossRefGoogle Scholar
  46. 46.
    46. D. Salvemini, S. L. Settle, J. L. Masferrer, K. Seibert, M. G. Currie, and P. Needleman, Regulation of prostaglandin production by nitric oxide: An in vivo analysis. Br J Pharmacol 114, 1171–1178 (1995).PubMedGoogle Scholar
  47. 47.
    47. T. Tetsuka, D. D. Iken, B. W. Miler, Z. Guan, L. D. Baier, and A. R. Morrison, Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest 97, 2051–2055 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    48. J. M. Mei, N. G. Hord, D. F. Winterstein, S. P. Donald, and J. M. Phang, Expression of prostaglandin endoperoxide H synthase-2 induced by nitric oxide in conditionally immortalized murine colonic epithelial cells. FASEB J 14, 1188–1192 (2000).PubMedGoogle Scholar
  49. 49.
    49. L. J. Marnett, T. L. Wright, B. C. Crews, S. R. Tannenbaum, and J. D. Morrow, Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric oxide synthase. J Biol Chem 275, 13,427–13,421 (2000).CrossRefGoogle Scholar
  50. 50.
    50. D. Salvemini, T. P. Misko, J. L. Masferrer, K. Seibert, M. G. Currie, and P. Needleman, Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90, 7240–7245 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    51. L. J. Marnett, S. W. Rowlinson, D. C. Goodwin, A. S. Kalgutkar, and C. A. Lanzo, Arachidonic acid oxygenation by COX-1 and COX-2. J Biol Chem 274, 22,903–22,906 (1999).CrossRefGoogle Scholar
  52. 52.
    52. V. B. O'Donell, B. Coles, M. J. Lewis, B. C. Crews, L. J. Marnett, and B. A. Freeman, Catalytic consumption of nitric oxide by prostaglandin H synthase regulates platelet function. J Biol Chem 275, 38,239–38,243 (2000).CrossRefGoogle Scholar
  53. 53.
    53. C. V. Rao, C. Indranie, B. Simi, P. T. Manning, J. R. Connor, and B. S. Reddy, Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase inhibitor. Cancer Res 62, 165–170 (2002).PubMedGoogle Scholar
  54. 54.
    54. C. V. Rao, T. Kawamori, R. Hamid, and B. S. Reddy, Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis 20, 641–644 (1999).PubMedCrossRefGoogle Scholar
  55. 55.
    55. C. V. Rao, I. Cooma, M. V. Swamy, B. Simi, and B. S. Reddy, Modulation of inducible nitric oxide synthase and cyclooxygenase activities by curcumin during different stages of experimental colon carcinogenesis. Proc Am Assoc Cancer Res 39, 3084 (2001).Google Scholar
  56. 56.
    56. Y. Liu, G. L. Borchert, and J. M. Phang, PEA3, an Ets transcription factor, mediates the induction of cyclooxygenase-2 by nitric oxide in colorectal cancer cells. J Biol Chem 279, 18,694–18,700 (2004).Google Scholar
  57. 57.
    57. A. Sala, S. Zarini, and M. Bolla, Leukotrienes, lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc) 63, 84–92 (1998).Google Scholar
  58. 58.
    58. O. P. Radmark, The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med 161, S11–S25 (2000).PubMedGoogle Scholar
  59. 59.
    59. J. F. Penrose, K. F. Austen, and B. K. Lam, Leukotrienes: Biosynthetic pathways, release and receptor-mediated actions with relevance to disease states. In: J. L. Gallin and R. Snyderman, eds. Inflammation Basic Principles And Clinical Correlates. Philadelphia: Lippincott Williams & Wilkins, 1999, pp. 361–372.Google Scholar
  60. 60.
    60. M. A. Bray, A. W. Ford-Hutchinson, and M. J. Smith, Leukotriene B4: An inflammatory mediator in vivo. Prostaglandins 22, 213–222 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    61. R. A. Lewis, K. F. Ansten, and R. J. Soberman, Leukotrienes and other products of the 5-lipoxigenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 192, 439–446 (2000).Google Scholar
  62. 62.
    62. D. L. Flynn, M. F. Rafferty, and A. M. Boctor, Inhibition of 5-hydroxyeicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally occurring diarylheptanoids: Inhibitory activities of curcuminoids and yakuchinones. Leukotrienes Med 22, 357–360 (1986).CrossRefGoogle Scholar
  63. 63.
    63. J. Hong, M. Bose, J. Ju, J.H. Ryu, X. Chen, S. Sang, M. J. Lee, and C. S. Yang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives; effects of cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671–1679 (2004).PubMedCrossRefGoogle Scholar
  64. 64.
    64. J. E. Skrzypczak, N. P. McCabe, S. H. Selman, and J. Jankun, Curcumin inhibits lipoxygenase by binding to its central cavity: Theoretical and X-ray evidence. Int J Mol Med 6, 521–526 (2000).Google Scholar
  65. 65.
    65. M. West, M. Mhatre, A. Ceballos, R. A. Floyd, P. Grammas, S. P. Gabbita, L. Hamdheydari, T. Mai, Z. Zemlan, and K. Hensley, The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91(1), 133–143 (2004).PubMedCrossRefGoogle Scholar
  66. 66.
    66. N. S. Prasad, R. Raghavendra, B. R. Lokesh, and K. A. Naidu, Spice phenolic inhibits human PMNL 5-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 70, 521–528 (2004).PubMedCrossRefGoogle Scholar
  67. 67.
    67. B. F. McAdam, F. Catella-Lawson, I. A. Mardini, S. Kapoor, J. A. Lawson, and G. A. FitzGerald, Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: The human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96, 272–277 (1999).PubMedCrossRefGoogle Scholar
  68. 68.
    68. B. H. Shah, Z. Nawaz, S. A. Pertani, A. Roomi, H. Mahmood, S. A. Saeed, et al., Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2 + signaling. Biochem Pharmacol 58, 1167–1172 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Chinthalapally V. Rao

There are no affiliations available

Personalised recommendations