ANTIOXIDANT AND ANTI-INFLAMMATORY PROPERTIES OF CURCUMIN

  • Venugopal P. Menon
  • Adluri Ram Sudheer

Abstract

Curcumin, a yellow pigment from Curcuma longa, is a major component of turmeric and is commonly used as a spice and food-coloring agent. It is also used as a cosmetic and in some medical preparations. The desirable preventive or putative therapeutic properties of curcumin have also been considered to be associated with its antioxidant and anti-inflammatory properties. Because free-radical-mediated peroxidation of membrane lipids and oxidative damage of DNAand proteins are believed to be associated with a variety of chronic pathological complications such as cancer, atherosclerosis, and neurodegenerative diseases, curcumin is thought to play a vital role against these pathological conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. Mukhopadhyay, N. Basu, N. Ghatak, and P. K. Gujral, Antiinflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12, 508–515 (1982).PubMedGoogle Scholar
  2. 2.
    2. A. C. Reddy and B. R. Lokesh, Effect of dietary turmeric (Curcuma longa) on iron induced lipid peroxidation in the rat liver. Food Chem Toxicol 32, 279–283 (1994).PubMedGoogle Scholar
  3. 3.
    3. R. A. Sharma, A. J. Gescher, and W. P. Steward, Curcumin: The story so far. Eur J Cancer 41, 1955–1968 (2005).PubMedGoogle Scholar
  4. 4.
    4. C. Kalpana, K. N. Rajasekharan, and V. P. Menon, Modulatory effects of curcumin and curcumin analog on circulatory lipid profiles during nicotine-induced toxicity in Wistar rats. J Med Food 8(2), 246–250 (2005).PubMedGoogle Scholar
  5. 5.
    5. A. R. Sudheer, C. Kapana, M. Srinivasan, and V P. Menon, Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: A dose-dependent study. Toxicol Mech Methods 15, 1–7 (2005).Google Scholar
  6. 6.
    6. D. Harman, Aging: A theory based on free radical and radiation chemistry. J Gerentol 2, 298–300 (1956).Google Scholar
  7. 7.
    7. A. P. Arrigo, Gene expression and thiol redox state. Free Radical Biol Med 27, 936–944 (1983).Google Scholar
  8. 8.
    8. J. J. Hadad, Antioxidant and prooxidant mechanisms in the regulation of redox (Y)—sensitive factors. Cell Signal 14, 879–897 (1989).Google Scholar
  9. 9.
    9. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine. Oxford University Press, Oxford, 1989, p. 63Google Scholar
  10. 10.
    10. J. J. Poderoso, M. C. Carreras, C. Lisdero, N. Riobo, F. Schopfer, and A. Boveris, Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328, 85–92 (1996).PubMedGoogle Scholar
  11. 11.
    11. B. Halliwell and J. M. C. Gutteridge, Antioxidant defenses. In: Free Radicals in Biology and Medicine, 3rd ed. Oxford University Press, Oxford, 1999, pp. 105–245.Google Scholar
  12. 12.
    12. B. Wood and A. Brooks, Human evolution: We are what we ate. Nature 400, 219–220 (1990).Google Scholar
  13. 13.
    13. J. S. Wright, Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct (Theochem) 591, 207–217 (2002).Google Scholar
  14. 14.
    14. S. V. Jovanovic, S. Steenken, C. W. Boone, and M. G. Simic, H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121, 9677–9681 (1999).Google Scholar
  15. 15.
    15. L. R. C. Barclay, M. R. Vinqvist, K. Mukai, H. Goto, Y. Hashimoto, A. Tokuanga, and H. Uno, The antioxidant mechanism of curcumin: Classical methods are needed to determine antioxidant mechanism and activity. Org Lett 2, 2841–2843 (2000).PubMedGoogle Scholar
  16. 16.
    16. K. I. Priyadarsini, D. K. Maity, G. H. Naik, M. S. Kumar, M. K. Unnikrishnan, J. G. Satav, and H. Mohan, Role of phenolic O:H and methylene hydrogen on the free radical reaction and antioxidant activity of curcumin. Free Radical. Biol Med 35, 475–484 (2003).Google Scholar
  17. 17.
    17. Y. M. Sun, H. Y. Zhang, D. Z. Chen, and C. B. Liu, Theoretical elucidation on the antioxidant mechanism of curcumin: A DFT study. Org Lett 4, 2909–2911 (2002).PubMedGoogle Scholar
  18. 18.
    18. L. Shen, H. Y. Zhang, and H. F. Ji, Successful application of TD-DFT in transient absorption spectra assignment. Org Lett 7, 243–246 (2005).PubMedGoogle Scholar
  19. 19.
    19. G. Litwinienko and K. U. Ingold, Abnormal solvent effect on hydrogen atom abstraction: Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 64, 5888–5896 (2004).Google Scholar
  20. 20.
    20. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  21. 21.
    21. L. Qiao, V. Kozoni, G. J. Tsioulias, M. I. Koutsos, R. Hanif, and S. J. Shiff, Selected eicosaniods increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim Biophys Acta 1258, 215–223 (1995).PubMedGoogle Scholar
  22. 22.
    22. C. D. Funk, L. B. Funk, M. E. Kennedy, A. S. Pong, and G. A. FitzGerald, Human platelet/erythroleukemia cell prostaglandin G/H synthase:cDNA cloning, expression and gene chromosomal assignment. FASEB J 5, 2304–2312 (1991).PubMedGoogle Scholar
  23. 23.
    23. K. Subbaramaiah, N. Telang, J. T. Ramonetti, R. Araki, B. DeVito, B. B. Weksler, and A. J. Dannenberg, Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells Cancer Res 56, 4424–4429 (1996).PubMedGoogle Scholar
  24. 24.
    24. H. Y. Fang, T. S. Lin, J. P. Lin, Y. C. Wu, K. C. Chow, and L. S. Wang, Cyclooxygenase-2 in human non-small cell lung cancer. Eur J Surg Oncol 29, 171–177 (2003).PubMedGoogle Scholar
  25. 25.
    25. J. L. Masferrer, B. S. Zweifel, P. T. Manning, S. D. Hauser, K. M. Leahy, W. G. Smith, P. C. Isakson, and K. Seibert, Selective inhibition of cyclooxygenase-2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91, 3228–3232 (1994).PubMedGoogle Scholar
  26. 26.
    26. T. Kawamori, C. V. Rao, K. Seibert, and B. S. Reddy, Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 58, 409–412 (1998).PubMedGoogle Scholar
  27. 27.
    27. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445–451 (1999).PubMedGoogle Scholar
  28. 28.
    28. J. Hong, M. Bose, J. Ju, J. H. Ryu, X. Chen, and S. Sang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25(9), 1671–1679 (2004).PubMedGoogle Scholar
  29. 29.
    29. A. Goel, C. R. Boland, and D. P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172,111–118 (2001)PubMedGoogle Scholar
  30. 30.
    30. Y. J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee, Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kB activation. Mutat Res 480, 243–268 (2001).PubMedGoogle Scholar
  31. 31.
    31. K. Chin, Y. Kurashima, T. Ogura, H. Tajiri, S. Yoshida, and Esumi, Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15, 437–442 (1997).PubMedGoogle Scholar
  32. 32.
    32. N. V. Blough and O. C. Zafiriou, Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem 24(4), 3502–3505 (1995).Google Scholar
  33. 33.
    33. C. Szabo and H. Ohshima, DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1, 373–385 (1997).PubMedGoogle Scholar
  34. 34.
    34. Messmer U. K., M. Ankarcrona, P. Nicotera, and B. Brune, p53 expression in nitric oxide-induced apoptosis. FEBS Lett 355, 23–26 (1994).PubMedGoogle Scholar
  35. 35.
    35. S. R. Goldstein, G. Y. Yang, X. Chen, S. K. Curtis, and C. S. Yang, Studies of iron deposits, inducible nitric oxide synthase and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis 19, 1445–1449 (1998).PubMedGoogle Scholar
  36. 36.
    36. L. L. Thomsen, D. W. Miles, L. Happerfield, L. G. Bobrow, R. G. Knowles, and S. Moncada, Nitric oxide synthase activity in human breast cancer. Br J Cancer 72, 41–44 (1995).PubMedGoogle Scholar
  37. 37.
    37. M. Takahashi, K. Fukuda, T. Ohata, and K. Wakabayashi, Increased expression of inducible and endothelial nitric oxide synthases in rat colon tumors induced by azoxymethane. Cancer Res 57, 1233–1237 (1997).PubMedGoogle Scholar
  38. 38.
    38. D. C. Jenkins, I. G. Charles, L. L. Thomsen, D. W. Moss, L. S. Holmes, S. A. Baylis, P. Rhodes, K. Westmore, P. C. Emson, and S. Moncada, Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92, 4392–4396 (1995).PubMedGoogle Scholar
  39. 39.
    39. L. M. Landino, B. C. Crews, M. D. Timmons, J. D. Morrow, and L. J. Marnett, Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 93, 15,069–15,074 (1996).Google Scholar
  40. 40.
    40. I. Brouet and H. Ohshima, Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).PubMedGoogle Scholar
  41. 41.
    41. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955–1962 (1998).PubMedGoogle Scholar
  42. 42.
    42. F. Chen, V. Castranova, X. Shi, and L. M. Demers, New insights into the role of nuclear factor-kB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45, 7–17 (1999).PubMedGoogle Scholar
  43. 43.
    43. D. Gius, A. Botero, S. Shah, and H. A. Curry, Oxidation/reduction status in the regulation of transcription factors NF-kB and AP-1. Toxicol Lett 106, 93–106 (1999).PubMedGoogle Scholar
  44. 44.
    44. I. Luque and C. Gelinas, Rel/NF-kB and IkB factors in oncogenesis. Semin Cancer Biol 8, 103–111 (1997).PubMedGoogle Scholar
  45. 45.
    45. H. Jo, R. Zhang, T. A. McKinsey, J. Shao, R. D. Beauchap, D. W. Ballard, and P. Liang, NF-kB is required for H-ras oncogene-induced abnormal cell proliferation and tumorigenesis. Oncogene 19, 841–849 (2000).PubMedGoogle Scholar
  46. 46.
    46. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kB is suppressed by curcumin (diferuloylmethane). J Biol Chem 270, 24,995–25,000 (1995).Google Scholar
  47. 47.
    47. F. H. Sarkar and Y. Li, Cell signaling pathways altered by natural chemopreventive agents. Mutat Res 555, 53–64 (2004).PubMedGoogle Scholar
  48. 48.
    48. B. B. Aggarwal, Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol 3(9), 745–756 (2003).PubMedGoogle Scholar
  49. 49.
    49. R. J. Moore, D. M. Owens, G. Stamp, C. Arnott, F. Burke, N. East, H. Holdsworth, L. Turner, B. Rollins, M. Pasparakis, G. Kollias, and F. Balkwill, Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nature Med 5(7), 828–831 (1999).PubMedGoogle Scholar
  50. 50.
    50. B. J. Sugarman, B. B. Aggarwal, P. E. Hass, I. S. Figari, M. A. Palladino, Jr., and H. M. Shepard, Recombinant human tumor necrosis factor-alpha: Effects on proliferation of normal and transformed cells in vitro. Science 230(4728), 943–945 (1985).PubMedGoogle Scholar
  51. 51.
    51. S. Shishodia, H. M. Amin, R. Lai, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70(5), 700–713 (2005).PubMedGoogle Scholar
  52. 52.
    52. P. A. Cerutti, Prooxidant states and tumor promotion. Science 227, 375–381 (1985).PubMedGoogle Scholar
  53. 53.
    53. W. J. Kozumbo, M. A. Trush, and T. W. Kensler, Are free radicals invlolved in tumor promotion? Chem–Biol Interact 54, 199–207 (1985).PubMedGoogle Scholar
  54. 54.
    54. W. Troll and R. Wiesner, The role of oxygen free radicals as a possible mechanism of tumor promotion. Annu Rev Pharmacol Toxicol 25, 509–528 (1985).PubMedGoogle Scholar
  55. 55.
    55. E. M. Perchellet and J. P. Perchellet, Characterization of the hydroperoxide response observed in mouse skin treated with tumor promoters in vivo. Cancer Res 49, 6193–6201 (1989).PubMedGoogle Scholar
  56. 56.
    56. J. J. Pence and J. J. Reiners, Murine epidermal xanthine oxidase activity: Correlation with degree of hyperplasia induced by tumor promoters. Cancer Res 47, 6388–6392 (1987).PubMedGoogle Scholar
  57. 57.
    57. L. Srinivas, T. Gindhart, and N. H. Colburn, Tumor-promoter resistant cells lack trisialoganglioside response. Proc Natl Acad Sci USA 79, 4988–4991 (1982).PubMedGoogle Scholar
  58. 58.
    58. T. W. Kensler, D. M. Bush, and W. J. Kozumbo, Inhibition of tumor promotion by a biomimetic superoxide dismutase. Science 221, 75–77 (1983).PubMedGoogle Scholar
  59. 59.
    59. L. J. Marnett, Peroxy free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis 8, 1365–1373 (1987).PubMedGoogle Scholar
  60. 60.
    60. A. K. Verma, C. L. Ashendel, and R K. Boutwell, Inhibition by prostaglandin synthesis inhibitors of the induction of epidermal ornithine decarboxylase activity, the accumulation of prostaglandins, and tumor promotion caused by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 40, 308–315 (1980).PubMedGoogle Scholar
  61. 61.
    61. M. Nagabhushan and S. V. Bhide, Curcumin as an inhibitors of cancer. J Am Coll Nutr 11, 192–198 (1992).PubMedGoogle Scholar
  62. 62.
    62. Y. P. Lu, R. L. Chang, M. T. Huang, and A. H. Conney, Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced increase in ornithine decarboxylase mRNA in mouse epidermis. Carcinogenesis 14, 293–297 (1993).PubMedGoogle Scholar
  63. 63.
    63. Y. J. Surh, K. K. Park, K. S. Chun, J. M. Lee, E. Lee, and S. S. Lee, Anti-tumor promoting activities of selected pungent substances present in ginger. J Environ Toxicol Pathol Oncol 18, 131–139 (1999).Google Scholar
  64. 64.
    64. M. T. Huang, W. Ma, P. Yen, J. G. Xie, J. Han, K. Frenkel, D. Grunberger, and A. H. Conney, Inhibitory effects of topical application of low doses of curcumin on 12-O-tetra-decanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83–88 (1997).PubMedGoogle Scholar
  65. 65.
    65. Y. Nakamura, Y. Ohto, A. Murakami, T. Osawa, and H. Ohigashi, Inhibitory effects of curcumin and tetrahydrocurcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res 89, 361–370 (1998).PubMedGoogle Scholar
  66. 66.
    66. T. S. Huang, S. C. Lee, and J. K. Lin, Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc Natl Acad. Sci USA 88, 5292–5296 (1991).PubMedGoogle Scholar
  67. 67.
    67. S. Kilaru, S. G. Frangos, A. H. Chen, D. Gottler, A. Dhadwal, O. Araim, and B. E. Sumpio, Nicotine: A review of its role in atherosclerosis. J Am Coll Surg 193, 538–546 (2001).PubMedGoogle Scholar
  68. 68.
    68. R. Olszanecki, J. Jawien, M. Gajda, L. Mateuszuk, A. Gebska, M. Korabiowska, S. Chlopicki, and R. Korbut, Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56(4), 627–635 (2005).PubMedGoogle Scholar
  69. 69.
    69. R. Srivastava, M. Dikshit, R. C. Srimal, and B. N. Dhawan, Anti-thrombotic effect of curcumin. Thromb Res 40(3), 413–417 (1985).PubMedGoogle Scholar
  70. 70.
    70. N. Toda, T. Okamura, I. Shimizu, and Y. Tatsuno, Postmortem functional changes in coronary and cerebral arteries from humans and monkeys. Cardiovasc Res 11, 707–713 (1985).CrossRefGoogle Scholar
  71. 71.
    71. R. B. Arora, S. K. Gupta, R. C. Sharma, and H. H. Siddiqui, Isolation and characterization of a sodium retaining substance from pig heart muscle and its role in myocardial infarction. Indian J Med Res 59(3), 483–493 (1971).PubMedGoogle Scholar
  72. 72.
    72. S. Chandra, S. K. Mukherjee, and N. Sethi, Effect of argemone oil feeding on blood biochemistry and tissue changes in albino rats. Indian J Med Sci 26(5), 308–312 (1972).PubMedGoogle Scholar
  73. 73.
    73. R L. Saul, P. Gee, and B. N. Ames, Free radicals, DNA damage and aging. In: Modern Biological Theories of Aging, H. R. Warner (ed). Raven Press, New York, 1987.Google Scholar
  74. 74.
    74. D. Harman, Free radical theory of aging: Effect of free radical inhibitors on the mortality rate of male LAP mice, J Gerontol 23, 476–482 (1968).PubMedGoogle Scholar
  75. 75.
    75. D. Harman, The aging process. Proc Natl Acad Sci USA 78, 124–128 (1981).Google Scholar
  76. 76.
    76. J. M. Talmashoff, T. Ouo, and R. G. Cutter, Superoxide dismutase: Correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77, 2777–2781 (1980).Google Scholar
  77. 77.
    77. J. M. Ringman, S. A. Frautschy, G. M. Cole, D. L. Masterman, and J. L. Cummings, A potential role of the curry spice curcumin in Alzheimer's disease. Curr Alzheimer Res 22(2), 131–136 (2005).Google Scholar
  78. 78.
    78. M. Grundman, M. Grundman, and P. Delaney, Antioxidant strategies for Alzheimer's disease. Proc Nutr Soc. 61(2), 191–202 (2002).PubMedGoogle Scholar
  79. 79.
    79. R. C. Benyon and M. J. Arthur, Mechanisms of hepatic fibrosis. J. Pediatr Gastroenterol Nutr 27, 75–85 (1998).PubMedGoogle Scholar
  80. 80.
    80. A. D. Burt, Cellular and molecular aspects of hepatic fibrosis. J Pathol 170, 105–114 (1993).PubMedGoogle Scholar
  81. 81.
    81. H. Nagase and F. Woessner, Jr., Matrix metallo proteinases. J Biol Chem 274, 21,491–21, 494 (1999).Google Scholar
  82. 82.
    82. M. J. Arthur, Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 279(2), G245–G249 (2000).PubMedGoogle Scholar
  83. 83.
    83. G. Akila, V. Rajakrishnan, P. Viswanathan, K. N. Rajashekaran, and V. P. Menon, Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis. Hepatol Res 11,147–157 (1998).Google Scholar
  84. 84.
    84. R. Rukkumani, K. Aruna, P. S. Varma, and V. P. Menon, Curcumin influences hepatic expression patterns of matrix metalloproteinases in liver toxicity. Italian J Biochem 53, 61–66 (2004).Google Scholar
  85. 85.
    85. B. Tesfamariam, Free radicals in diabetic endothelial cell dysfunction. Free Radical Biol Med 16, 383–391 (1994).Google Scholar
  86. 86.
    86. A. Bierhaus, M. A. Hofmann, R. Ziegler, and P. Nawroth, AGE and other interaction with AGE-receptors in vascular disease and diabetes-I. The AGE concept. Cardiovasc Res 37, 586–590 (1998).PubMedGoogle Scholar
  87. 87.
    87. G. L. King, H. Ishii, and D. Koya, Diabetic vascular dysfunction: A model of excessive activation of protein kinase C. Kidney Int 60, S77–S85 (1997).Google Scholar
  88. 88.
    88. J. R. Williamson, K. Chang, M. Frangos, K. S. Hasan, Y. Ido, T. Kawamura, J. R. Nyengaard, M. Van Den Enden, C. Kilo, and R. G. Tilton, Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42, 801–813 (1993).PubMedGoogle Scholar
  89. 89.
    89. B. Goossens, J. Grooten, K. De Vos, and W. Fiers, Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92(18), 8115–8119 (1995).PubMedGoogle Scholar
  90. 90.
    90. G. Boden, Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46(1), 3–10 (1997).PubMedGoogle Scholar
  91. 91.
    91. C. R. Kahn, Causes of insulin resistance. Nature 373(6513), 384–385 (1995).PubMedGoogle Scholar
  92. 92.
    92. G. B. Sijitlal, P. Chitra, and G. Chandrakasan, Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem Pharmacol 56(12), 1067–1074 (1998).Google Scholar
  93. 93.
    93. T. Mahesh, M. Sri Balasubashini, and V. P. Menon, Photo irradiated curcumin supplementation in streptozotocin-induced diabetic rats: Effect on lipid peroxidation. Therapie 59(6), 639–644 (2004).PubMedCrossRefGoogle Scholar
  94. 94.
    94. C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Nat1 Acad Sci USA 90, 1839–1842 (1993).Google Scholar
  95. 95.
    95. A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, Inhibition of human immunodeficiency virus type-l integrase by curcumin. Biochem Pharmacol. 49(8), 1165–1170 (1995).PubMedGoogle Scholar
  96. 96.
    96. C. A. Janeway, The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11 (1992).PubMedGoogle Scholar
  97. 97.
    97. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergicencephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T-cells and differentiation of neural antigen specific ThI cells. J Immunol 169, 6506 (2002).Google Scholar
  98. 98.
    98. H. C. Huang, T. R. Jan, and S. F. Yeh, Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur J Pharmacol 221, 381–385 (1992).PubMedGoogle Scholar
  99. 99.
    99. M. Kitagawa, H. Mitsui, H. Nakamura, S. Yoshino, S. Miyakawa, N. Ochiai, M. Onobori, H. Suzuki, and T. Sumida, Differential regulation of rheumatoid synovial cell interleukin-12 production by tumor necrosis factor alpha and CD 40 signals. Arthritis Rheum 42, 1917–1926 (1999).PubMedGoogle Scholar
  100. 100.
    100. B. Bosman, Testing of lipoxygenase inhibitors, cycloxigenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis. Skin Pharmacol 7, 324–334 (1994).PubMedCrossRefGoogle Scholar
  101. 101.
    101. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng, Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143, 937–949 (2000).PubMedGoogle Scholar
  102. 102.
    102. A. Bernd, C. Theilig, S. Kippenberger, A. Ramirez-Bosca, M. Podda, J. Diaz, J. Miquel, and R. Kaufmann, An extract of Curcuma longa exerts anti-oxidative, anti-inflammatory and antiproliferative effects on human keratinocytes in vitro. J Invest Dermatol 109, 460–464 (1997).Google Scholar
  103. 103.
    103. A. Bernd, C. Theilig, S. Kippenberger, A. Ramirez-Bosca, J. Diaz, J. Miquel, and R. Kaufmann, Effect of Curcuma longa extract on the expression of proinflammatory cytokines. Skin Pharmacol App. Skin Physiol 13, 226–234 (2000).Google Scholar
  104. 104.
    104. I. Kurose, H. Higuchi, S. Kato, S. Miura, N. Watanabe, Y. Kamegaya, K. Tomita, M. Takaishi, Y. Haire, M. Fukuda, K. Mizukami, and H. Ishii, Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol. Gastroenterology 112, 1331–1343 (1997).PubMedGoogle Scholar
  105. 105.
    105. V. Rajakrishnan, P. Vishwanathan, K. N. Rajasekharan, G. Gunashekaran, and V. P. Menon, Role of curcumin in alcoholic hepatotoxicity. Med Sci Res 26, 715–719 (1998).Google Scholar
  106. 106.
    106. A. Helen, K. Krishnakumar, P. L. Vijayammal, and K. T. Augusti, Antioxidant effect of onion oil (Allium Cepa linn.) on the damages induced by nicotine in rats as compared to alpha-tocopherol. Toxicol Lett 116, 61–68 (2000).PubMedGoogle Scholar
  107. 107.
    107. D. Yildiz, N. Ercal, and D. W. Armstrong, Nicotine enantiomers and oxidative stress. Toxicology 130, 155–165 (1998).PubMedGoogle Scholar
  108. 108.
    108. C. Kalpana and V. P. Menon, Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol 56, 581–586 (2004).PubMedGoogle Scholar
  109. 109.
    109. K. Polasa, A. N. Naidu, I. Ravindranath, and K. Krishnaswamy, Inhibition of B(a)P induced strand breaks in presence of curcumin Mutat. Res 557, 203–213 (2004).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Venugopal P. Menon
  • Adluri Ram Sudheer

There are no affiliations available

Personalised recommendations