• Ricky A. Sharma
  • William P. Steward
  • Andreas J. Gescher


Curcuma spp. contain turmerin, essential oils, and curcuminoids, including curcumin. Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6- heptadiene-3,5-dione] is regarded as the most biologically active constituent of the spice turmeric and it comprises 2–8% of most turmeric preparations. Preclinical data from animal models and phase I clinical studies performed with human volunteers and patients with cancer have demonstrated low systemic bioavailability following oral dosing.


Cervical Intraepithelial Neoplasia Advanced Colorectal Cancer Aberrant Crypt Focus Curcuma Longa Colorectal Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. B. Brouk, Plants Consumed by Man. New York: Academic Press, 1975, p. 331.Google Scholar
  2. 2.
    2. D. Eigner and D. Sholz, Ferula asa–foetida and curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67, 1–6 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    3. J. Milobedzka, V. Kostanecki, and V. Lampe, Structure. Chem Ber 43, 2163 (1910).CrossRefGoogle Scholar
  4. 4.
    4. D. D. Heath, F. Khwaja, and C. L. Rock, Curcumin content of turmeric and curry powders. FASEB J 18, A125 (2004).Google Scholar
  5. 5.
    5. H. P. Ammon and M. A. Wahl, Pharmacology of curcuma longa. Planta Med 57, 1–7 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    6. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).PubMedGoogle Scholar
  7. 7.
    7. B. Joe, M. Vijaykumar, and B. R. Lokesh, Biological properties of curcumin: Cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44, 97–111 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    8. B. Wahlstrom and G. Blennow, A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol 43, 86–92 (1978).CrossRefGoogle Scholar
  9. 9.
    9. V. Ravindranath and N. Chandrasekhara, Absorption and tissue distribution of curcumin in rats. Toxicology 16, 259–265 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    10. V. Ravindranath and N. Chandrasekhara, In vitro studies on the intestinal absorption of curcumin in rats. Toxicology 20, 251–257 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    11. V. Ravindranath and N. Chandrasekhara, Metabolism of curcumin: Studies with [3H] curcumin. Toxicology 22, 337–344 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    12. G. M. Holder, J. L. Plummer, and A. J. Ryan, The metabolism and excretion of curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] in the rat. Xenobiotica 8, 761–768 (1978).PubMedGoogle Scholar
  13. 13.
    13. M. H. Pan, T. M. Huang, and J. K. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27, 486–494 (1999).PubMedGoogle Scholar
  14. 14.
    14. C. Ireson, S. Orr, D. J. L. Jones, et al., Characterization of metabolites of the chemopreventive agent curcumin in humans and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61, 1058–1064 (2001).PubMedGoogle Scholar
  15. 15.
    15. C R. Ireson, D. J. L. Jones, S. Orr, M. W. H. Coughtrie, D. Boocock, M. L. Williams, P. B. Farmer, W. P. Steward, and A. J. Gescher, Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 11, 97–104 (2002).Google Scholar
  16. 16.
    16. R. A. Sharma, C. R. Ireson, R. D. Verschoyle, et al., Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels. Clin Cancer Res 7, 1452–1458 (2001).PubMedGoogle Scholar
  17. 17.
    17. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. S. R. Srinivas, Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64, 353–356 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    18. A. L. Cheng, C, H. Hsu, J. K. Lin, et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 2895–2900 (2001).PubMedGoogle Scholar
  19. 19.
    19. M. T. Ruffin, D. P. Normolle, D. D. Heath, J. M. Bailey, S. I. Murray, M. E. Boggs, J. A. Crowell, C. L. Rock, and D. E. Brenner, Dose escalation of curcumin in healthy adults. Cancer Epidemiol Biomarkers Prev 12(Pt 2 Suppl S), 1324S–1324S (2003).Google Scholar
  20. 20.
    20. R. A. Sharma, H. R. McLelland, K. A. Hill, et al., Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7, 1894–1900 (2001).PubMedGoogle Scholar
  21. 21.
    21. R. A. Sharma, S. A. Euden, S. L. Platton, et al., Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 10, 6847–6854 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    22. G. Garcea, D. P. Berry, D. J. L. Jones, et al., Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14, 120–125 (2005).PubMedGoogle Scholar
  23. 23.
    23. G. Garcea, D. J. L. Jones, R. Singh, et al., Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90, 1011–1015 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    24. NCI, DCPC, Clinical development plan: Curcumin. J Cell Biochem 26S, 72–85 (1996).Google Scholar
  25. 25.
    25. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  26. 26.
    26. K. B. Soni, A. Rajan, and R. Kuttan, Reversal of aflatoxin induced liver damage by turmeric and curcumin. Cancer Lett 66, 115–121 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    27. T. Kawamori, R. Lubet, V. E. Steele, et al., Chemopreventative effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59, 597–601 (1999).PubMedGoogle Scholar
  28. 28.
    28. H. S. Samaha, G. J. Kelloff, V. Steele, C. V. Rao, and B. S. Reddy, Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate, Apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res 57, 1301–1305 (1997).PubMedGoogle Scholar
  29. 29.
    29. S. R. Volate, D. M. Davenport, S. J. Muga, and M. Wargovich, Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis 26, 1450–1456 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    30. C. Luongo, A. R. Moser, S. Gledhill, and W. F Dove, Loss of Apc(+) in intestinal adenomas from Min mice. Cancer Res 54, 5947–5952 (1994).PubMedGoogle Scholar
  31. 31.
    31. S. Perkins, R. D. Verschoyle, K. A. Hill, I. Parveen, M. D. Threadgill, R. A. Sharma, M. L. Williams, W. P. Steward, and A. J. Gescher, Chemopreventive efficacy and pharmacokinetics of curcumin in the Min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11, 535–540 (2002).PubMedGoogle Scholar
  32. 32.
    32. R. G. Tunstall, R. A. Sharma, S. Perkins, S. Sale, R. Singh, P. B. Farmer, W. P. Steward, and A. J. Gescher, Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: Modification by dietary curcumin and implications for clinical trials. Eur J Cancer 42, 415–421 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    33. A. H. Conney, Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The seventh DeWitt S. Goodman Lecture. Cancer Res 63, 7005–7031 (2003).PubMedGoogle Scholar
  34. 34.
    34. N. Li, X. Chen, J. Liao, et al. Inhibtion of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23, 1307–1313 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    35. K. Imaida, S. Tamano, K. Kato, Y. Ikeda, M. Asamoto, S. Takahashi, Z. Nir, M. Murakoshi, H. Nishino, and T. Shirai, Lack of chemopreventive effects of lycopene and curcumin on experimental rat prostate carcinogenesis. Carcinogenesis 22, 467–472 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    36. B. B. Aggarwal, S. Shishodia, Y. Takada, S. Banerjee, R. A. Newman, C. E. Bueso-Ramos, and J. E. Price, Curcumin suppresses the paclitaxel-induced nuclear factor-κ B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490–7498 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    37. S. V. Bava, V. T. Puliappadamba, A. Deepti, A. Nair, D. Karunagaran, and R. J. Anto, Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κ B and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280, 6301–6308 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    38. Y. Shukla, A. Arora, and P. Taneja, Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat Res: Genet Toxicol Environ Mutag 515, 197–202 (2002).CrossRefGoogle Scholar
  39. 39.
    39. M. E. Egan, M. Pearson, S. A. Weiner, et al., Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304, 600–602 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    40. S. V. Singh, X. Hu, S. K. Srivastava, et al., Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19, 1357–1360 (1998).PubMedCrossRefGoogle Scholar
  41. 41.
    41. M. Susan and M.A. Rao, Induction of glutathione S-transferase activity by curcumin in mice. Drug Res 42, 962–964 (1992).Google Scholar
  42. 42.
    42. J. T. Piper, S. S. Singhal, M. Salameh, R. T. Torman, Y. C. Awasthi, and S. Awasthi, Mechanisms of anticarcinogenic properties of curcumin: The effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int J Biochem Cell Biol 30, 445–456 (1998).PubMedCrossRefGoogle Scholar
  43. 43.
    43. W. A. Nijhoff, G. M. Groen, and W. H. M. Peters, Induction of rat hepatic and intestinal glutathione S-transferases and glutathione by dietary naturally occurring anticarcinogens. Int J Oncol 3, 1131–1139 (1993).Google Scholar
  44. 44.
    44. A. T. Dinkova-Kostova and P. Talalay, Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 20, 911–914 (1999).PubMedCrossRefGoogle Scholar
  45. 45.
    45. J. D. Hayes and D. J. Pulford, The glutathione S-transferases supergene family. Crit Rev Biochem Mol Biol 30, 445–600 (1995).PubMedGoogle Scholar
  46. 46.
    46. A. Duvoix, S. Delhalle, R. Blasius, et al., Effect of chemopreventive agents on glutathione S-transferase P1-1 gene expression mechanisms via activating protein 1 and nuclear factor κB inhibition. Biochem Pharmacol 68, 1101–1111 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    47. P. K. Lala and C. Chakraborty, Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2, 149–156 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    48. T. deRojas-Walker, S. Tamir, H. Ji, J. S. Wishnok, and S. R. Tannenbaum, Nitric oxide induces oxidative damage in addition to deaminiation in macrophage DNA. Chem Res Toxicol 8, 473–477 (1995).PubMedCrossRefGoogle Scholar
  49. 49.
    49. M. Graziewicz, D. A. Wink, and F. Laval, Nitric oxide inhibits DNA ligase activity: Potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17, 2501–2505 (1996).PubMedCrossRefGoogle Scholar
  50. 50.
    50. S. Ambs, W. P. Bennett, W. G. Merrium, et al., Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91, 86–88; reply 1510–1511 (1999).PubMedGoogle Scholar
  51. 51.
    51. A. Von Knethen and B. Brune B, Cyclooxygenase-2: An essential regulator of NO-mediated apoptosis. FASEB J 11, 887–895 (1997).Google Scholar
  52. 52.
    52. A. Von Knethen, D. Callsen, and B. Brune, NF-κB and AP-1 activation by nitric oxide attenuated apoptotic death in RAW 264.7 macrophages. Mol Biol Cell 10, 361–370 (1999).Google Scholar
  53. 53.
    53. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).PubMedCrossRefGoogle Scholar
  54. 54.
    54. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955–1962 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    55. A. Raysid and A. Lelo, The effect of curcumin and placebo on human gall-bladder function: An ultrasound study. Aliment Pharmacol Ther 13, 245–249 (1999).CrossRefGoogle Scholar
  56. 56.
    56. S. M. Plummer, K. A. Hill, M. F. W. Festing, W. P. Steward, A. J. Gescher, and R. A. Sharma, Clinical development of leukocyte cyclooxygenase 2 activity as a systemic biomarker for cancer chemopreventive agents. Cancer Epidemiol Biomarkers Prev 10, 1295–1299 (2001).PubMedGoogle Scholar
  57. 57.
    57. S. M. Plummer, K. A. Holloway, M. M. Manson, et al., Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18, 6013–6020 (1999).PubMedCrossRefGoogle Scholar
  58. 58.
    58. F. Zhang, N. K. Altorki, J. R. Mestre, et al., Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445–451 (1999).PubMedCrossRefGoogle Scholar
  59. 59.
    59. A. C. Bharti, N. Donato, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171, 3863–3871 (2003).PubMedGoogle Scholar
  60. 60.
    60. K. Sugimoto, H. Hanai, K. Tozawa, et al., Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 123, 1912–1922 (2002).PubMedCrossRefGoogle Scholar
  61. 61.
    61. R. R. Satoskar, S. J. Shah, and S. G. Shenoy, Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with post-operative inflammation. Int J Clin Pharmacol Ther Toxicol 24, 651–654 (1986).PubMedGoogle Scholar
  62. 62.
    62. S. D. Deodhar, R. Sethi, and R. C. Srimal, Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71, 632–634 (1980).PubMedGoogle Scholar
  63. 63.
    63. P. R. Holt, S. Katz, and R. Kirshoff, Curcumin therapy in inflammatory bowel disease: A pilot study. Dig Dis Sci 11, 2191–2193 (2005).CrossRefGoogle Scholar
  64. 64.
    64. B. Lal, A. K. Kapoor, O. P. Asthana, et al., Efficacy of curcumin in the managememtn of chronic anterior uveitis. Phytother Res 13, 318–322 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    65. B. Lal, A. K. Kapoor, P. K. Agrawal, et al., Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res 14, 443–447 (2000).PubMedCrossRefGoogle Scholar
  66. 66.
    66. R. Kuttan, P. C. Sudheeran, and C. D. Josph, Turmeric and curcumin as topical agents in cancer therapy. Tumori 73, 29–31 (1987).PubMedGoogle Scholar
  67. 67.
    67. W. H. Chan and H. Wu, Anti-apoptotic effects of curcurnin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem 92, 200–212 (2004).PubMedCrossRefGoogle Scholar
  68. 68.
    68. M. C. Jiang, H. F. Yang Yen, J. J. Y. Yen, et al., Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26, 111–120 (1996).PubMedCrossRefGoogle Scholar
  69. 69.
    69. C. H. Yan, M. S. Jamaluddin, B. Aggarwal, J. Myers, and D.D. Boyd, Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Therapeut. 4, 233–241 (2005).Google Scholar
  70. 70.
    70. M. L. Kuo, T. S. Huang, and J. K. Lin, Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1317, 95–100 (1996).PubMedGoogle Scholar
  71. 71.
    71. G. P. Collett and F. C. Campbell, Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25, 2183–2189 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    72. M. M. Y. Chan, Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49, 1551–1556 (1995).PubMedCrossRefGoogle Scholar
  73. 73.
    73. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41–47 (1999).PubMedCrossRefGoogle Scholar
  74. 74.
    74. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immnopharmacol 21, 745–757 (1999).CrossRefGoogle Scholar
  75. 75.
    75. Y. Moon, W. C. Glasgow, and T. E. Eling, Curcumin suppresses interleukin 1 beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmacol Exp Ther 315, 788–795 (2005).PubMedCrossRefGoogle Scholar
  76. 76.
    76. E. Balogun, M. Hoque, P. F. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam, and R. Motterlini, Curcurmin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371, 887–895 (2003).PubMedCrossRefGoogle Scholar
  77. 77.
    77. C. K. Andreadi, L. M. Howells, P. A. Atherfold, and M. M. Manson, Involvement of Nrf2, p38, B-Raf, and nuclear factor-κ B, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol 69, 1033–1040 (2006).PubMedGoogle Scholar
  78. 78.
    78. P. F. Firozi, V. S. Aboobaker, and R. K. Bhattacharya, Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem-Biol Interact 100, 41–51 (1996).PubMedCrossRefGoogle Scholar
  79. 79.
    79. H. P. Ciolino, P. J. Daschner, T. T. Wang, and G. C. Yeh, Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56, 197–206 (1998).PubMedCrossRefGoogle Scholar
  80. 80.
    80. M. S. Woo, S. H. Jung, S. Y. Kim, J. W. Hyun, K. H. Ko, W. K. Kim, and H. S. Kim, Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335, 1017–1025 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ricky A. Sharma
  • William P. Steward
  • Andreas J. Gescher

There are no affiliations available

Personalised recommendations