Abstract

The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. C. A. Janeway, Jr., The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11 (1992).PubMedGoogle Scholar
  2. 2.
    2. I. J. Crane and J. V. Forrester, Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol 25, 75 (2005).PubMedGoogle Scholar
  3. 3.
    3. T. Tsubata, B cell abnormality and autoimmune disorders. Autoimmunity 38, 331 (2005).PubMedGoogle Scholar
  4. 4.
    4. J. J. Bright, C. Du, M. Coon, S. Sriram, and S. J. Klaus, Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: An effect of the novel anti-inflammatory drug lisofylline. J Immunol 161, 7015 (1998).PubMedGoogle Scholar
  5. 5.
    5. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506 (2002).PubMedGoogle Scholar
  6. 6.
    6. P. Friedl, A. T. den Boer, and M. Gunzer, Tuning immune responses: Diversity and adaptation of the immunological synapse. Nat Rev Immunol 5, 532 (2005).PubMedGoogle Scholar
  7. 7.
    7. M. Kronenberg, Self-tolerance and autoimmunity. Cell 65, 537 (1991).PubMedGoogle Scholar
  8. 8.
    8. S. Anderton, C. Burkhart, B. Metzler, and D. Wraith, Mechanisms of central and peripheral T-cell tolerance: Lessons from experimental models of multiple sclerosis. Immunol Rev 169, 123 (1999).PubMedGoogle Scholar
  9. 9.
    9. A. W. Goldrath and S. M. Hedrick, Central tolerance matters.[comment]. Immunity 23, 113 (2005).PubMedGoogle Scholar
  10. 10.
    10. E. Thorsby and B. A. Lie, HLA associated genetic predisposition to autoimmune diseases: Genes involved and possible mechanisms. Transplant Immunol 14, 175 (2005).Google Scholar
  11. 11.
    11. S. G. Sukkar and E. Rossi, Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun Rev 3, 199 (2004).PubMedGoogle Scholar
  12. 12.
    12. S. M. Rates, Plants as source of drugs. Toxicon 39, 603 (2001).PubMedGoogle Scholar
  13. 13.
    13. M. M. Chan, C. T. Ho, and H. I. Huang, Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production. Cancer Lett 96, 23 (1995).PubMedGoogle Scholar
  14. 14.
    14. Y. Surh, Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res. 428, 305 (1999).PubMedGoogle Scholar
  15. 15.
    15. R. B. Arora, V. Kapoor, N. Basu, and A. P. Jain, Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res. 59, 1289 (1971).PubMedGoogle Scholar
  16. 16.
    16. D. Chandra and S. S. Gupta, Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa (Haldi). Indian J Med Res 60, 138 (1972).PubMedGoogle Scholar
  17. 17.
    17. N. Ghatak and N. Basu, Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol 10, 235 (1972).PubMedGoogle Scholar
  18. 18.
    18. A. Mukhopadhyay, N. Basu, N. Ghatak, and P. K. Gujral, Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12, 508 (1982).PubMedGoogle Scholar
  19. 19.
    19. R. C. Srimal and B. N. Dhawan, Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447 (1973).PubMedGoogle Scholar
  20. 20.
    20. H. P. Ammon, H. Safayhi, T. Mack, and J. Sabieraj, Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethanopharmacol 38, 113 (1993).Google Scholar
  21. 21.
    21. A. C. Reddy and B. R. Lokesh, Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes, Mol Cell Biochem. 111, 117 (1992).PubMedGoogle Scholar
  22. 22.
    22. M. N. Sreejayan Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013 (1994).Google Scholar
  23. 23.
    23. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533 (1995).PubMedGoogle Scholar
  24. 24.
    24. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955 (1998).PubMedGoogle Scholar
  25. 25.
    25. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445 (1999).PubMedGoogle Scholar
  26. 26.
    26. J. Y. Liu, S. J. Lin, and J. K. Lin, Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857 (1993).PubMedGoogle Scholar
  27. 27.
    27. S. S. Kakar and D. Roy, Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin. Cancer Lett 87, 85 (1994).PubMedGoogle Scholar
  28. 28.
    28. A. H. Conney, T. Lysz, T. Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385 (1991).PubMedGoogle Scholar
  29. 29.
    29. Y. J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee, Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481, 243 (2001).PubMedGoogle Scholar
  30. 30.
    30. P. Claeson, U. Pongprayoon, T. Sematong, P. Tuchinada, V. Reutrakul, P. Soontornsaratune, an W. C. Taylor, Non-phenolic linear diarylheptanoids from Curcuma xanthorrhiza. A novel type of topical anti-inflammatory agents: structure–activity relationship. Planta Med 62, 236 (1996).PubMedGoogle Scholar
  31. 31.
    31. P. Venkatesan and M. N. Rao, Structure–activity relationships for the inhibition of lipid peroxidation and the scavenging of free radicals by synthetic symmetrical curcumin analogues. J Pharm Pharmacol 52, 1123 (2000).PubMedGoogle Scholar
  32. 32.
    32. C. Natarajan and J. J. Bright, Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3, 59 (2002).PubMedGoogle Scholar
  33. 33.
    33. M. Srinivasan, Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J Med Sci 26, 269 (1972).PubMedGoogle Scholar
  34. 34.
    34. P. S. Babu and K. Srinivasan, Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol Cell Biochem 152, 13 (1995).PubMedGoogle Scholar
  35. 35.
    35. A. Srivivasan, V. P. Menon, V. Periaswamy, and K. N. Rajasekaran, Protection of pancreatic beta-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci 6, 327 (2003).PubMedGoogle Scholar
  36. 36.
    36. S. D. Deodhar, R. Sethi, and R. C. Srimal, Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71, 632 (1980).PubMedGoogle Scholar
  37. 37.
    37. J. L. Funk, J. N. Oyarzo, J. B. Frye, G. Chen, R. C. Lantz, S. D. Jolad, A. M. Solyom, and B. N. Timmermann, Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J Nat Prod 69, 351 (2006).PubMedGoogle Scholar
  38. 38.
    38. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng, Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143, 937 (2000).PubMedGoogle Scholar
  39. 39.
    39. B. Bosman, Testing of lipoxygenase inhibitors, cyclooxygenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis, Skin Pharmacol 7, 324 (1994).PubMedGoogle Scholar
  40. 40.
    40. P. R. Holt, S. Katz, and R. Kirshoff, Curcumin therapy in inflammatory bowel disease, a pilot study. Dig Dis Sci 50, 2191 (2005).PubMedGoogle Scholar
  41. 41.
    41. K. Sugimoto, H. Hanai, K. Tozawa, T. Aoshi, M. Uchijima, T. Nagata, and Y. Koide, Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 123, 1912 (2002).PubMedGoogle Scholar
  42. 42.
    42. B. Salh, K. Assi, V. Templeman, K. Parhar, D. Owen, A. Gomez-Munoz, and K. Jacobson, Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol 285, G235 (2003).PubMedGoogle Scholar
  43. 43.
    43. Y. T. Jian, G. F. Mai, J. D. Wang, Y. L. Zhang, R. C. Luo, and Y. X. Fang, Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 11, 1747 (2005).PubMedGoogle Scholar
  44. 44.
    44. G. Dean, How many people in the world have multiple sclerosis? Neuroepidemiology 13, 1 (1994).PubMedGoogle Scholar
  45. 45.
    45. S. Donoghue and C. Greenlees, Drugs in development for the treatment of multiple sclerosis, antigen non-specific therapies: An update. Expert Opin Investig Drugs 9, 167 (2000).PubMedGoogle Scholar
  46. 46.
    46. J. W. Prineas, R. O. Barnard, T. Revesz, E. E. Kwon, L. Sharer, and E. S. Cho, Multiple sclerosis. Pathology of recurrent lesions. Brain 116, 681 (1993).PubMedGoogle Scholar
  47. 47.
    47. B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mork, and L. Bo, Axonal transection in the lesions of multiple sclerosis. [see comment]. N Engl J Med 338, 278 (1998).PubMedGoogle Scholar
  48. 48.
    48. C. S. Raine, Multiple sclerosis: Immunopathologic mechanisms in the progression and resolution of inflammatory demyelination. Res Publ Assoc Res Nerv Ment Dis 68, 37 (1990).PubMedGoogle Scholar
  49. 49.
    49. E. M. Frohman, M. K. Racke, and C. S. Raine, Multiple sclerosis: The plaque and its pathogenesis. N Engl J Med 354, 942 (2006).PubMedGoogle Scholar
  50. 50.
    50. J. J. Bright, B. F. Musuro, C. Du, and S. Sriram, Expression of IL-12 in CNS and lymphoid organs of mice with experimental allergic encephalitis. J Neuroimmunol 82, 22 (1998).PubMedGoogle Scholar
  51. 51.
    51. J. J. Bright, C. Du, and S. Sriram, Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 162, 6255 (1999).PubMedGoogle Scholar
  52. 52.
    52. G. Muthian, H. P. Raikwar, C. Johnson, J. Rajasingh, A. Kalgutkar, L. J. Marnett, and J. J. Bright, COX-2 inhibitors modulate IL-12 signaling through JAK–STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 26, 73 (2006).PubMedGoogle Scholar
  53. 53.
    53. D. Devendra, E. Liu, and G. S. Eisenbarth, Type 1 diabetes: Recent developments. Br Med J 328, 750 (2004).Google Scholar
  54. 54.
    54. G. S. Eisenbarth, Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314, 1360 (1986).PubMedGoogle Scholar
  55. 55.
    55. J. M. Barker, J. Yu, L. Yu, J. Wang, D. Miao, F. Bao, E. Hoffenberg, J. C. Nelson, P. A. Gottlieb, M. Rewers, and G. S. Eisenbarth, Autoantibody “subspecificity” in type 1 diabetes: Risk for organ-specific autoimmunity clusters in distinct groups. Diabetes Care 28, 850 (2005).PubMedGoogle Scholar
  56. 56.
    56. O. Kordonouri, R. Hartmann, D. Deiss, M. Wilms, and A. Gruters-Kieslich, Natural course of autoimmune thyroiditis in type 1 diabetes: Association with gender, age, diabetes duration, and puberty. Arch Dis Child 90, 411 (2005).PubMedGoogle Scholar
  57. 57.
    57. M. J. Franz, J. P. Bantle, C. A. Beebe, J. D. Brunzell, J.-L. Chiasson, A. Garg, L. A. Holzmeister, B. Hoogwerf, E. Mayer-Davis, A. D. Mooradian, J. Q. Purnell, M. Wheeler, American Diabetes, Association, Nutrition principles and recommendations in diabetes. Diabetes Care 27, S36 (2004).PubMedGoogle Scholar
  58. 58.
    58. G. S. Sidhu, H. Mani, J. P. Gaddipati, A. K. Singh, P. Seth, K. K. Banaudha, G. K. Patnaik, and R. K. Maheshwari, Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7, 362 (1999).PubMedGoogle Scholar
  59. 59.
    59. P. Suresh Babu and K. Srinivasan, Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol Cell Biochem 181, 87 (1998).PubMedGoogle Scholar
  60. 60.
    60. P. A. Kumar, P. Suryanarayana, P. Y. Reddy, and G. B. Reddy, Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis 11, 561 (2005).PubMedGoogle Scholar
  61. 61.
    61. P. Suryanarayana, M. Saraswat, T. Mrudula, T.P. Krishna, K. Krishnaswamy, and G. B. Reddy, Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46, 2092 (2005)PubMedGoogle Scholar
  62. 62.
    62. G. S. Firestein, Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 11, S39 (2005).PubMedGoogle Scholar
  63. 63.
    63. C. J. Edwards and C. Cooper, Early environmental factors and rheumatoid arthritis. Clin Exp Immunol 143, 1 (2006).PubMedGoogle Scholar
  64. 64.
    64. E. M. Ruderman, Current and future pharmaceutical therapy for rheumatoid arthritis. Curr Pharm Des 11, 671 (2005).PubMedGoogle Scholar
  65. 65.
    65. A. Liacini, J. Sylvester, W. Q. Li, and M. Zafarullah, Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21, 251 (2002).PubMedGoogle Scholar
  66. 66.
    66. A. Liacini, J. Sylvester, W. Q. Li, W. Huang, F. Dehnade, M. Ahmad, an M. Zafarullah, Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res 288, 208 (2003).PubMedGoogle Scholar
  67. 67.
    67. B. B. Aggarwal and S. Shishodia, Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: Reasoning for seasoning. Ann NY Acad Sci 1030, 434 (2004).PubMedGoogle Scholar
  68. 68.
    68. M. Shakibaei, G. Schulze-Tanzil, T. John, and A. Mobasheri, Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: An immunomorphological study, Ann Anat 187, 487 (2005).PubMedGoogle Scholar
  69. 69.
    69. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206 (2005).PubMedGoogle Scholar
  70. 70.
    70. A. M. Bowcock, The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 6, 93 (2005).PubMedGoogle Scholar
  71. 71.
    71. S. Chow, C. Rizzo, L. Ravitskiy, and A. A. Sinha, The role of T cells in cutaneous autoimmune disease. Autoimmunity 38, 303 (2005).PubMedGoogle Scholar
  72. 72.
    72. J. G. Krueger and A. Bowcock, Psoriasis pathophysiology: Current concepts of pathogenesis. Ann Rheum Dis 64, 30 (2005).Google Scholar
  73. 73.
    73. J. Miquel, A. Bernd, J. M. Sempere, J. Diaz-Alperi, and A. Ramirez, The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 34, 37 (2002).PubMedGoogle Scholar
  74. 74.
    74. D. Shi, J. Das, and G. Das, Inflammatory bowel disease requires the interplay between innate and adaptive immune signals. Cell Res 16, 70 (2006).PubMedGoogle Scholar
  75. 75.
    75. E. Ricart, R. Panaccione, E. V. Loftus, Jr., W. J. Tremaine, W. S. Harmsen, A. R. Zinsmeister, and W. J. Sandborn, Autoimmune disorders and extraintestinal manifestations in first-degree familial and sporadic inflammatory bowel disease: A case-control study. Inflamm Bowel Dis 10, 207 (2004).PubMedGoogle Scholar
  76. 76.
    76. F. R. Byrne and J. L. Viney, Mouse models of inflammatory bowel disease. Curr Opin Drug Discov Devel 9, 207 (2006).PubMedGoogle Scholar
  77. 77.
    77. S. Ardizzone and G. Bianchi Porro, Biologic therapy for inflammatory bowel disease. Drugs 65, 2253 (2005).PubMedGoogle Scholar
  78. 78.
    78. E. Domenech, Inflammatory bowel disease: Current therapeutic options. Digestion 73, 67 (2006).PubMedGoogle Scholar
  79. 79.
    79. A. M. Feldman and D. McNamara, Myocarditis.[see comment]. N Engl J Med 343, 1388 (2000).PubMedGoogle Scholar
  80. 80.
    80. G. W. Dec, Jr., I. F. Palacios, J. T. Fallon, H. T. Aretz, J. Mills, D. C. Lee, and R. A. Johnson, Active myocarditis in the spectrum of acute dilated cardiomyopathies. Clinical features, histologic correlates, and clinical outcome. N Engl J Med 312, 885 (1985).PubMedGoogle Scholar
  81. 81.
    81. R. E. McCarthy 3rd, J. P. Boehmer, R. H. Hruban, G. M. Hutchins, E. K. Kasper, J. M. Hare, and K. L. Baughman, Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis.[see comment]. N Engl J Med 342, 690.Google Scholar
  82. 82.
    82. B. Lauer, M. Schannwell, U. Kuhl, B. E. Strauer, and H. P. Schultheiss, Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 35, 11 (2000).PubMedGoogle Scholar
  83. 83.
    83. A. L. Caforio, N. J. Mahon, F. Tona, and W. J. McKenna, Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis, pathogenetic and clinical significance. Eur J Heart Fail 4, 411 (2002).PubMedGoogle Scholar
  84. 84.
    84. D. Fairweather, Z. Kaya, G. R. Shellam, C. M. Lawson, and N. R. Rose, From infection to autoimmunity. J Autoimmun 16, 175 (2001).PubMedGoogle Scholar
  85. 85.
    85. Y. Furukawa, K. Kobuke, and A. Matsumori, Role of cytokines in autoimmune myocarditis and cardiomyopathy. Autoimmunity 34, 165 (2001).PubMedGoogle Scholar
  86. 86.
    86. M. Afanasyeva, D. Georgakopoulos, and N. R. Rose, Autoimmune myocarditis: Cellular mediators of cardiac dysfunction. Autoimmun Rev 3, 476 (2004).PubMedGoogle Scholar
  87. 87.
    87. W. Liu, W.-M. Li, C. Gao, and N.-L. Sun, Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. J Autoimmun 25, 258 (2005).PubMedGoogle Scholar
  88. 88.
    88. C. Nirmala and R. Puvanakrishnan, Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159, 85 (1996).PubMedGoogle Scholar
  89. 89.
    89. C. H. Yeh, T. P. Chen, Y. C. Wu, Y. M. Lin, and P. Jing Lin, Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J Surg Res 125, 109 (2005).PubMedGoogle Scholar
  90. 90.
    90. C. H. Yeh, Y. M. Lin, Y. C. Wu, and P. J. Lin, Inhibition of NF-kappa B activation can attenuate ischemia/reperfusion-induced contractility impairment via decreasing cardiomyocytic proinflammatory gene up-regulation and matrix metalloproteinase expression. J Cardiovasc Pharmaco. 45, 301 (2005).Google Scholar
  91. 91.
    91. R. R. Singh, SLE: Translating lessons from model systems to human disease. Trends Immunol 26, 572 (2005).PubMedGoogle Scholar
  92. 92.
    92. R. Lyons, S. Narain, C. Nichols, M. Satoh, and W. H. Reeves, Effective use of autoantibody tests in the diagnosis of systemic autoimmune disease. Ann NY Acad Sci 1050, 217 (2005).PubMedGoogle Scholar
  93. 93.
    93. G. Nagy, A. Koncz, A. and A. Perl, T- and B-cell abnormalities in systemic lupus erythematosus. Crit Rev Immunol 25, 123 (2005).PubMedGoogle Scholar
  94. 94.
    94. J. A. Croker and R. P. Kimberly, SLE: Challenges and candidates in human disease. Trends Immunol 26, 580 (2005).PubMedGoogle Scholar
  95. 95.
    95. S. G. O'Neill and L. Schrieber, Immunotherapy of systemic lupus erythematosus. Autoimmun Rev 4, 395 (2005).PubMedGoogle Scholar
  96. 96.
    96. D. B. Drachman, Myasthenia gravis. N Engl J Med 330, 1797 (1994).PubMedGoogle Scholar
  97. 97.
    97. J. Lindstrom, D. Shelton, and Y. Fujii, Myasthenia gravis. Adv Immunol 42, 233 (1988).PubMedGoogle Scholar
  98. 98.
    98. K. Shigemoto, S. Kubo, N. Maruyama, N. Hato, H. Yamada, C. Jie, N. Kobayashi, K. Mominoki, Y. Abe, N. Ueda, and S. Matsuda, Induction of myasthenia by immunization against muscle-specific kinase. J Clin Invest. 116, 1016 (2006).PubMedGoogle Scholar
  99. 99.
    99. D. Asthana, Y. Fujii, G. E. Huston, and J. Lindstrom, Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol 67, 240 (1993).PubMedGoogle Scholar
  100. 100.
    100. G. X. Zhang, B. G. Xiao, M. Bakhiet, P. van der Meide, H. Wigzell, H. Link, and T. Olsson, Both CD4+ and CD8/ T cells are essential to induce experimental autoimmune myasthenia gravis. J Exp Med 184, 349 (1996).PubMedGoogle Scholar
  101. 101.
    101. L. Moiola, F. Galbiati, G. Martino, S. Amadio, E. Brambilla, G. Comi, A. Vincent, L. M. Grimaldi, and L. Adorini, IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol 28, 2487 (1998).PubMedGoogle Scholar
  102. 102.
    102. S. Sitaraman, D. W. Metzger, R. J. Belloto, A. J. Infante, and K. A. Wall, Interleukin-12 enhances clinical experimental autoimmune myasthenia gravis in susceptible but not resistant mice. J Neuroimmunol 107, 73 (2000).PubMedGoogle Scholar
  103. 103.
    103. H. Tlaskalova-Hogenova, L. Tuckova, R. Stepankova, T. Hudcovic, L. Palova-Jelinkova, H. Kozakova, P. Rossmann, D. Sanchez, J. Cinova, T. Hrncir, M. Kverka, L. Frolova, H. Uhlig, F. Powrie, and P. Bland, Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann NY Acad Sci 1051, 787 (2005).PubMedGoogle Scholar
  104. 104.
    104. D. N. Cook, D. S. Pisetsky, and D. A. Schwartz, Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975 92004).Google Scholar
  105. 105.
    105. G. Cheng and S. P. Schoenberger, CD40 signaling and autoimmunity. Curr Dir Autoimmun 5, 51 (2002).PubMedGoogle Scholar
  106. 106.
    106. H. S. Youn, S. I. Saitoh, K. Miyake, and D. H. Hwang, Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72, 62 (2006).PubMedGoogle Scholar
  107. 107.
    107. S. Kato, Y. Yuzawa, N. Tsuboi, S. Maruyama, Y. Morita, T. Matsuguchi, and S. Matsuo, Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: The role of toll-like receptor 4. J Am Soc Nephrol 15, 1289 (2004).PubMedGoogle Scholar
  108. 108.
    108. R. S. Liblau, S. M. Singer, and H. O. McDevitt, Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases.[see comment]. Immunol Today 16, 34 (1995).PubMedGoogle Scholar
  109. 109.
    109. B. Y. Kang, S. W. Chung, W. Chung, S. Im, S. Y. Hwang, and T. S. Kim, Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol 384, 191 (1999).PubMedGoogle Scholar
  110. 110.
    110. B. Y. Kang, Y. J. Song, K. M. Kim, Y. K. Choe, S. Hwang, and T. S. Kim, Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol 128, 380 (1999).PubMedGoogle Scholar
  111. 111.
    111. M. Sospedra and R. Martin, Immunology of multiple sclerosis. Annu Rev Immunol 23, 683 (2005).PubMedGoogle Scholar
  112. 112.
    112. J. C. W. Edwards and G. Cambridge, B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6, 394 (2006).PubMedGoogle Scholar
  113. 113.
    113. S. Hori, T. Takahashi, and S. Sakaguchi, Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81, 331 (2003).PubMedGoogle Scholar
  114. 114.
    114. L. A. Stephens, D. Gray, and S. M. Anderton, CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci USA 102, 17,418 (2005).Google Scholar
  115. 115.
    115. K. J. Hammond and D. I. Godfrey, NKT cells: Potential targets for autoimmune disease therapy? Tissue Antigens 59, 353 (2002).PubMedGoogle Scholar
  116. 116.
    116. S. Sharif, G. A. Arreaza, P. Zucker, Q. S. Mi, and T. L. Delovitch, Regulation of autoimmune disease by natural killer T cells. J Mol Med 80, 290 (2002).PubMedGoogle Scholar
  117. 117.
    117. R. M. Strieter, S. L. Kunkel, and R. C. Bone, Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 21, S447 (1993).PubMedGoogle Scholar
  118. 118.
    118. H. Korner and J. D. Sedgwick, Tumour necrosis factor and lymphotoxin: Molecular aspects and role in tissue-specific autoimmunity. Immunol Cell Biol 74, 465 (1996).PubMedGoogle Scholar
  119. 119.
    119. F. Atzeni, M. Turiel, F. Capsoni, A. Doria, P. Meroni, and P. Sarzi-Puttini, Autoimmunity and anti-TNF-{α} agents. Ann NY Acad Sci 1051, 559 (2005).PubMedGoogle Scholar
  120. 120.
    120. K. Hosaka, J. Ryu, S. Saitoh, T. Ishii, K. Kuroda, and K. Shimizu, The combined effects of anti-TNFalpha antibody and IL-1 receptor antagonist in human rheumatoid arthritis synovial membrane. Cytokine 32, 263 (2005).PubMedGoogle Scholar
  121. 121.
    121. V. S. Yadav, K. P. Mishra, D. P. Singh, S. Mehrotra, and V. K. Singh, Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27, 485 (2005).PubMedGoogle Scholar
  122. 122.
    122. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Innumopharmacol 21, 745 (1999).Google Scholar
  123. 123.
    123. S. M. Plummer, K. A. Holloway, M. M. Manson, R. J. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013 (1999).PubMedGoogle Scholar
  124. 124.
    124. Y. R. Chen and T. H. Tan, Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17, 173 (1998).PubMedGoogle Scholar
  125. 125.
    125. Y. Iwakura, Roles of IL-1 in the development of rheumatoid arthritis:Consideration from mouse models. Cytokine Growth Factor Rev 13, 341 (2002).PubMedGoogle Scholar
  126. 126.
    126. N. Jurrmann, R. Brigelius-Flohe, and G. F. Bol, Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 135, 1859 (2005).PubMedGoogle Scholar
  127. 127.
    127. G. Trinchieri, S. Pflanz, and R. A. Kastelein, The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses.[comment]. Immunity 19, 641 (2003).PubMedGoogle Scholar
  128. 128.
    128. K. E. Balashov, D. R. Smith, S. J. Khoury, D. A. Hafler, and H. L. Weiner, Increased interleukin 12 production in progressive multiple sclerosis: Induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94, 599 (1997).PubMedGoogle Scholar
  129. 129.
    129. J. J. Bright, M. Rodriguez, and S. Sriram, Differential influence of interleukin-12 in the pathogenesis of autoimmune and virus-induced central nervous system demyelination. J Virol 73, 1637 (1999).PubMedGoogle Scholar
  130. 130.
    130. 130. J. P. Leonard, K. E. Waldburger, and S. J. Goldman, Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181, 381 (1995).PubMedGoogle Scholar
  131. 131.
    131. B. Oppmann, R. Lesley, B. Blom, J. C. Timans, Xu, B. Hunte, F. Vega, N. Yu, J. Wang, K. Singh, F. Zonin, E. Vaisberg, T. Churakova, M. Liu, D. Gorman, J. Wagner, S. Zurawski, Y. Liu, J. S. Abrams, K. W. Moore, D. Rennick, R. de Waal-Malefyt, C. Hannum, J. F. Bazan, and R. A. Kastelein, Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715 (2000).PubMedGoogle Scholar
  132. 132.
    132. X. T. Ma, X. j. Zhang, B. Zhang, Y. Q. Geng, Y. M. Lin, G. Li, and K. F. Wu, Expression and regulation of interleukin-23 subunits in human peripheral blood mononuclear cells and hematopoietic cell lines in response to various inducers. Cell Biol Int 28, 689 (2004).PubMedGoogle Scholar
  133. 133.
    133. A. Wada, Y. Tada, O. Shimozato, Y. Takiguchi, K. Tatsumi, T. Kuriyama, and M. Tagawa, Expression of CD40 ligand in CD40-positive murine tumors activates transcription of the interleukin-23 subunit genes and produces antitumor responses. Anticancer Res 24, 2713 (2004).PubMedGoogle Scholar
  134. 134.
    134. D. J. Cua, J. Sherlock, Y. Chen, C. A. Murphy, B. Joyce, B. Seymour, L. Lucian, W. To, S. Kwan, T. Churakova, S. Zurawski, M. Wiekowski, S. A. Lira, D. Gorman, R.A. Kastelein, and J. D. Sedgwick, Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.[see comment]. Nature 421, 744 (2003).PubMedGoogle Scholar
  135. 135.
    135. S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655 (2000).PubMedGoogle Scholar
  136. 136.
    136. A. Takeda, S. Hamano, A. Yamanaka, T. Hanada, T. Ishibashi, T. W. Mak, A. Yoshimura, and H. Yoshida, Cutting edge: Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170, 4886 (2003).PubMedGoogle Scholar
  137. 137.
    137. E. Bettelli, B. Sullivan, S. J. Szabo, R. A. Sobel, L. H. Glimcher, and V. K. Kuchroo, Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200, 79 (2004).PubMedGoogle Scholar
  138. 138.
    138. A. E. Lovett-Racke, A. E. Rocchini, J. Choy, S. C. Northrop, R. Z. Hussain, R. B. Ratts, D. Sikder, and M. K. Racke, Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719 (2004).PubMedGoogle Scholar
  139. 139.
    139. S. Pflanz, J. C. Timans, J. Cheung, R. Rosales, H. Kanzler, J. Gilbert, L. Hibbert, T. Churakova, M. Travis, E. Vaisberg, W. M. Blumenschein, J. D. Mattson, J. L. Wagner, W. To, S. Zurawski, T. K. McClanahan, D. M. Gorman, J. F. Bazan, R. de Waal Malefyt, D. Rennick, and R. A. Kastelein, IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16, 779 (2002).PubMedGoogle Scholar
  140. 140.
    140. R. Goldberg, Y. Zohar, G. Wildbaum, Y. Geron, G. Maor, and N. Karin, Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J Immunol 173, 6465 (2004).PubMedGoogle Scholar
  141. 141.
    141. B. M. Segal, B. k. Dwyer, and E. M. Shevach, An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187, 537 (1998).PubMedGoogle Scholar
  142. 142.
    142. S. Ghosh, M. J. May, and E. B. Kopp, NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225 (1998).PubMedGoogle Scholar
  143. 143.
    143. G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 174, 8116 (2005).PubMedGoogle Scholar
  144. 144.
    144. G. Kang, P. J. Kong, Y. J. Yuh, S. Y. Lim, S. V. Yim, W. Chun, and S. S. Kim, Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci 94, 325 (2004).PubMedGoogle Scholar
  145. 145.
    145. W. C. Sha, Regulation of immune responses by NF-kappa B/Rel transcription factor. J Exp Med 187, 143 (1998).PubMedGoogle Scholar
  146. 146.
    146. J. D. Woronicz, X. Gao, Z. Cao, M. Rothe, and D. V. Goeddel, IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278, 866 (1997).PubMedGoogle Scholar
  147. 147.
    147. T. L. Murphy, M. G. Cleveland, P. Kulesza, J. Magram, and K. M. Murphy, Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol Cell Biol 15, 5258 (1995).PubMedGoogle Scholar
  148. 148.
    148. D. D'Ambrosio, M. Cippitelli, M. G. Cocciolo, D. Mazzeo, P. Di Lucia, R. Lang, F. Sinigaglia, and P. Panina-Bordignon, Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 101, 252 (1998).PubMedGoogle Scholar
  149. 149.
    149. D. Mazzeo, P. Panina-Bordignon, H. Recalde, F. Sinigaglia, and D. D'Ambrosio, Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-kappaB. Eur J Immunol 28, 3205 (1998).PubMedGoogle Scholar
  150. 150.
    150. C. M. Bacon, E. F. Petricoin 3rd, J. R. Ortaldo, R. C. Rees, A. C. Larner, J. A. Johnston, and J. J. O'Shea, Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 92, 7307 (1995).PubMedGoogle Scholar
  151. 151.
    151. N. G. Jacobson, S. J. Szabo, R. M. Weber-Nordt, Z. Zhong, R. D. Schreiber, J. E. Darnell, Jr., and K. M. Murphy, Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 181, 1755 (1995).PubMedGoogle Scholar
  152. 152.
    152. C. Parham, M. Chirica, J. Timans, E. Vaisberg, M. Travis, J. Cheung, S. Pflanz, R. Zhang, K. P. Singh, F. Vega, W. To, J. Wagner, A. M. O'Farrell, T. McClanahan, S. Zurawski, C. Hannum, D. Gorman, D. M. Rennick, R. A. Kastelein, R. de Waal Malefyt, and K. W. Moore, A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168, 5699 (2002).PubMedGoogle Scholar
  153. 153.
    153. S. Aggarwal, N. Ghilardi, M. H. Xie, F. J. de Sauvage, and A. L. Gurney, Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278, 1910 (2003).PubMedGoogle Scholar
  154. 154.
    154. S. Kamiya, T. Owaki, N. Morishima, F. Fukai, J. Mizuguchi, and T. Yoshimoto, An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 173, 3871 (2004).PubMedGoogle Scholar
  155. 155.
    155. J. J. O'Shea, H. Park, M. Pesu, D. Borie, and P. Changelian, New strategies for immunosuppression, interfering with cytokines by targeting the Jak/Stat pathway. Curr Opin Rheumatol 17, 305 (2005).PubMedGoogle Scholar
  156. 156.
    156. H. M. Seidel, P. Lamb, and J. Rosen, Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19, 2645 (2000).PubMedGoogle Scholar
  157. 157.
    157. J. J. Bright, Targeting autoimmune diseases through nutraceuticals. Nutrition 20, 39 (2004).PubMedGoogle Scholar
  158. 158.
    158. G. Muthian and J. J. Bright, Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24, 542 (2004).PubMedGoogle Scholar
  159. 159.
    159. G. Muthian, H. P. Raikwar, J. Rajasingh, and J. J. Bright, 1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res 83, 1299 (2006).PubMedGoogle Scholar
  160. 160.
    160. L. Neff, M. Zeisel, J. Sibilia, M. Scholler-Guinard, J. P. Klein, and D. Wachsmann, NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell Microbiol 3, 703 (2001).PubMedGoogle Scholar
  161. 161.
    161. R. K. Patel and C. Mohan, PI3K/AKT signaling and systemic autoimmunity. Immunol Res 31, 47 (2005).PubMedGoogle Scholar
  162. 162.
    162. J. W. Cho, K. Park, G. R. Kweon, B. C. Jang, W. K. Baek, M. H. Suh, C. W. Kim, K. S. Lee, and S. I. Suh, Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1, p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37, 186 (2005).PubMedGoogle Scholar
  163. 163.
    163. S. L. Kunkel and N. Godessart, Chemokines in autoimmunity: From pathology to therapeutics. Autoimmun Rev 1, 313 (2002).PubMedGoogle Scholar
  164. 164.
    164. S. Arimilli, W. Ferlin, N. Solvason, S. Deshpande, M. Howard, and S. Mocci, Chemokines in autoimmune diseases. Immunol Rev 177, 43 (2000).PubMedGoogle Scholar
  165. 165.
    165. X. Chen, J. J. Oppenheim, and O. M. Howard, Chemokines and chemokine receptors as novel therapeutic targets in rheumatoid arthritis (RA): Inhibitory effects of traditional Chinese medicinal components. Cell Mol Immunol 1, 336 (2004).PubMedGoogle Scholar
  166. 166.
    166. H. Hidaka, T. Ishiko, T. Furuhashi, H. Kamohara, S. Suzuki, M. Miyazaki, O. Ikeda, S. Mita, T. Setoguchi, and M. Ogawa, Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface: Impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95, 1206 (2002).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • John J. Bright

There are no affiliations available

Personalised recommendations