PROTECTION FROM ACUTE AND CHRONIC LUNG DISEASES BY CURCUMIN

  • Narayanan Venkatesan
  • Durairaj Punithavathi
  • Mary Babu
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 595)

Abstract

The aim of this review has been to describe the current state of the therapeutic potential of curcumin in acute and chronic lung injuries. Occupational and environmental exposures to mineral dusts, airborne pollutants, cigarette smoke, chemotherapy, and radiotherapy injure the lungs, resulting in acute and chronic inflammatory lung diseases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. B. B. Aggarwal and S. Shishodia, Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals, Reasoning for seasoning. Ann NY Acad Sci 1030, 434 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    2. S. Shishodia, S. Gautam, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    3. K. C. Thresiamma, J. George, and R. Kuttan, Protective effect of curcumin, ellagic acid and bixin on radiation induced toxicity. Indian J Exp Biol 34, 845 (1996).PubMedGoogle Scholar
  4. 4.
    4. N. Venkatesan, Pulmonary protective effects of curcumin against paraquat toxicity Life Sci 66, PL21 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    5. N. Venkatesan and G. Chandrakasan, Modulation of cyclophosphamide-induced early lung injury by curcumin, an anti-inflammatory antioxidant. Mol Cell Biochem 142, 79 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    6. N. Venkatesan, V. Punithavathi, and G. Chandrakasan, Curcumin protects bleomycin-induced lung injury in rats, Life Sci 61, PL51 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    7. D. Punithavathi, N. Venkatesan, and M. Babu, Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 131, 169 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    8. D. Punithavathi, N. Venkatesan, and M. Babu, Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. Br J Pharmacol 139, 1342 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    9. C. Kalpana and V. P. Menon, Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol 56, 581 (2004).PubMedGoogle Scholar
  10. 10.
    10. B. Madan and B. Ghosh, Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock 19, 91 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    11. A. Ram, M. Das, and B. Ghosh, Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biol Pharm Bull 26, 1021 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    12. T. J. Gross and G. W. Hunninghake, Idiopathic pulmonary fibrosis. N Engl J Med 345, 517 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    13. P. Camus, A. Fanton, P. Bonniaud, C. Camus, and P. Foucher, Interstitial lung disease induced by drugs and radiation. Respiration. 71, 301 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    14. J. A. Copper, Jr. Drug-induced lung disease. Adv Intern Med 42, 231 (1977).Google Scholar
  15. 15.
    15. E. Crouch, Pathobiology of pulmonary fibrosis. Am J Physiol 259, L159 (1990).PubMedGoogle Scholar
  16. 16.
    16. M. P. Keane, R. M. Strieter, and J. A. Belperio, Mechanisms and mediators of pulmonary fibrosis. Crit Rev Immunol 25, 429 (2005).PubMedGoogle Scholar
  17. 17.
    17. M. Gharaee-Kermani and S. H. Phan, Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. Curr Pharm Des 11, 3943 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    18. D. Bouros and K. M. Antoniou, Current and future therapeutic approaches in idiopathic pulmonary fibrosis. Eur Respir J 26, 693 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    19. R. C. Chambers and G. J. Laurent, Coagulation cascade proteases and tissue fibrosis. Biochem Soc Trans 30, 194 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    20. N. Hashimoto, H. Jin, T. Liu, S. W. Chensue, and S. H. Phan, Bone marrow-derived progenitor cells in pulmonary fibrosis J Clin Invest 113(2), 243–252 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    21. K K. Soudamini, M. C. Unnikrishnan, K. B. Soni, and R. Kuttan, Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36, 239 (1992).PubMedGoogle Scholar
  22. 22.
    22. W. H. Chung, B. M. Bennett, W. J. Racz, J. F. Brien, and T. E. Massey, Induction of c-jun and TGF-β1in Fischer 344 rats during amiodarone-induced pulmonary fibrosis, Am J Physiol 281, L1180 (2001).Google Scholar
  23. 23.
    23. C. P. Denton and C. M. Black, Targeted therapy comes of age in scleroderma. Trends Immunol 26, 596 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    24. E. Tourkina, P. Gooz, J. C. Oates, A. Ludwicka-Bradley, R. M. Silver, and S. Hoffman, Curcumin-induced apoptosis in scleroderma lung fibroblasts, role of protein kinase cepsilon. Am J Respir Cell Mol Biol 31, 28 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    25. R. M. Senior and S. D. Shapiro, Chronic obstructive pulmonary disease: Epidemiology, pathophysiology, and pathogenesis. In: Fishman's Pulmonary Diseases and Disorders. Volume 1, A. P. Fishman et al., eds. New York: McGraw-Hill, 1998, pp. 659–681.Google Scholar
  26. 26.
    26. P. M. O'Byrne and D. S. Postma, The many faces of airway inflammation: Asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 15, S41 (1999).Google Scholar
  27. 27.
    27. J. R. Spurzem and S. I. Rennard, Pathogenesis of COPD. Semin Respir Crit Care Med 26, 142 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    28. M. Saetta, Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 147, 301 (1993).PubMedGoogle Scholar
  29. 29.
    29. M. Saetta, CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160, 711 (1999).PubMedGoogle Scholar
  30. 30.
    30. J. L. Wright and A. Churg, Animal models of cigarette smoke-induced COPD. Chest 122, 301S (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    31. V. L. Kinnula, Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax 60, 693 (2004).CrossRefGoogle Scholar
  32. 32.
    32. W. Boots, G. R. Haenen, and A. Bast, Oxidant metabolism in chronic obstructive pulmonary disease Eur Respir J 46(Suppl),14 (2003).CrossRefGoogle Scholar
  33. 33.
    33. P. J. Barnes, COPD: Is there light at the end of the tunnel? Curr Opin Pharmacol 4, 263 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    34. C. Kalpana and V. P. Menon, Curcumin ameliorates oxidative stress during nicotine-induced lung toxicity in Wistar rats. Ital J Biochem 53, 82 (2004).PubMedGoogle Scholar
  35. 35.
    35. S. Shishodia, P. Potdar, C. G. Gairola, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBα kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    36. M. A. Matthay and G. A. Zimmerman, Acute lung injury and the acute respiratory distress syndrome: Four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33, 319 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    37. M. A. Schwarz, Acute lung injury: cellular mechanisms and derangements. Paediatr Respir Rev 2, 3 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    38. G. J. Bellingan, The pulmonary physician in critical care: The pathogenesis of ALI/ARDS. Thorax 57, 540 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    39. R. Jain and A. DalNogare, Pharmacological therapy for acute respiratory distress syndrome. Mayo Clin Proc 81, 205 (2006).PubMedGoogle Scholar
  40. 40.
    40. N. R. MacIntyre, Current issues in mechanical ventilation for respiratory failure. Chest 128, 561S (2005).PubMedCrossRefGoogle Scholar
  41. 41.
    41. H. Freise, U. B. Bruckner, and H. U. Spiegel, Animal models of sepsis. J Invest Surg 14, 195 (2003)CrossRefGoogle Scholar
  42. 42.
    42. C. W. Chow, M. T. Herrera Abreu, T. Suzuki, and G. P. Downey, Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29, 427 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    43. M. P. Fink, Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr Opin Crit Care 8, 6 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    44. C. M. Doerschuk, W. M. Quinlan, N. A. Doyle, D. C. Bullard, D. Vestweber, M. L. Jones, F. Takei, P. A. Ward, and A. L. Beaudet, The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice. J Immunol 157, 4609 (1996).PubMedGoogle Scholar
  45. 45.
    45. M. Hu, Q. Du, I. Vancurova, X. Lin, E. J. Miller, H. H. Simms, and P. Wang, Proapoptotic effect of curcumin on human neutrophils: Activation of the p38 mitogen-activated protein kinase pathway. Crit Care Med 33, 2571 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    46. A. Literat, F. Su, M. Norwicki, M. Durand, R. Ramanathan, C.A. Jones, P. Minoo, and K. Y. Kwong, Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD). Life Sci 70, 253 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    47. L. Cohn, J. A. Elias, and G. L. Chupp, Asthma: Mechanisms of disease persistence and progression. Annu Rev Immunol 22, 789 (2004).PubMedCrossRefGoogle Scholar
  48. 48.
    48. J. A. Elias, C. G. Lee, T. Zheng, B. Ma, R. J. Homer, and Z. Zhu, New insights into the pathogenesis of asthma. J Clin Invest 111, 291 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    49. B. Kay, S. Phipps, and D. S. Robinson, A role for eosinophils in airway remodelling in asthma. Trends Immunol 25, 477 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    50. G. M. Walsh, M. Al-Rabia, M. G. Blaylock, D. W. Sexton, C. J. Duncan, and A. Lawrie, Control of eosinophil toxicity in the lung. Curr Drug Targets Inflamm Allergy 4, 481 (2005).PubMedCrossRefGoogle Scholar
  51. 51.
    51. A. Sher, R. L. Coffman, S. Hieny, P. Scott, and A. W. Cheever, Interleukin-5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci USA. 87, 61 (1990).PubMedCrossRefGoogle Scholar
  52. 52.
    52. T. T. Kung, D. M. Stelts, J. A. Zurcher, G. K. Adams 3rd, R. W. Egan, W. Kreutner, A. S. Watnick, H. Jones, and R. W. Chapman, Involvement of IL-5 in a murine model of allergic pulmonary inflammation, prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol 13, 360 (1995).PubMedGoogle Scholar
  53. 53.
    53. M. J. Leckie, Anti-interleukin-5 monoclonal antibodies: Preclinical and clinical evidence in asthma models. Am J Respir Med 2, 245 (2003).PubMedGoogle Scholar
  54. 54.
    54. G. M. Walsh, Novel therapies for asthma: Advances and problems. Curr Pharm Des 11, 3027 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    55. G. Caramori, K. Ito, and I. M. Adcock, Targeting Th2 cells in asthmatic airways. Curr Drug Targets Inflamm Allergy 3(3), 243–255 (2004).PubMedCrossRefGoogle Scholar
  56. 56.
    56. M. Ichinose and P. J. Barnes, Cytokine-directed therapy in asthma. Curr Drug Targets Inflamm Allergy 3, 263 (2004).PubMedCrossRefGoogle Scholar
  57. 57.
    57. J. E. Pease, Asthma, allergy and chemokines. Curr Drug Targets 7, 3 (2006).PubMedCrossRefGoogle Scholar
  58. 58.
    58. T. Kobayashi, S. Hashimoto, and T. Horie, Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochem Pharmacol 54, 819 (1997).PubMedCrossRefGoogle Scholar
  59. 59.
    59. Y. Hu, J. Peng, D. Feng, L. Chu, X. Li, Z. Jin, Z. Lin, and Q. Zeng, Role of extracellular signal-regulated kinase, p38 kinase, and activator protein-1 in transforming growth factor-beta1-induced alpha smooth muscle actin expression in human fetal lung fibroblasts in vitro. Lung 84, 33 (2006).CrossRefGoogle Scholar
  60. 60.
    60. Y. Moon, W. C. Glasgow, and T. E. Eling, Curcumin suppresses interleukin-1β-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmaco. Ex. The. 315, 788 (2005).Google Scholar
  61. 61.
    61. C. T. Shun, S. K. Lin, C. Y. Hong, S. H. Kok, Y. H. Juan, C. C. Wang, M. C. Hsu, C. M. Liu, C.-C., Chemokine ligand 2 gene expression in nasal polyp fibroblasts, possible implication in the pathogenesis of nasal polyposis. Ann Otol Rhinol Laryngol 114, 879 (2005).PubMedGoogle Scholar
  62. 62.
    62. J. Hong, J., M. Bose, J. Ju, J. H. Ryu, X. Chen, S. Sang, M. J. Lee, and C. S. Yang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671 (2004).PubMedCrossRefGoogle Scholar
  63. 63.
    63. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41 (1999).PubMedCrossRefGoogle Scholar
  64. 64.
    64. T. Yokoyama, H. Oono, A. Miyamoto, S. Ishiguro, and A. Nishio, Magnesium-deficient medium enhances NO production in alveolar macrophages isolated from rats. Life Sci. 72, 1247 (2003).PubMedCrossRefGoogle Scholar
  65. 65.
    65. S. K. Biswas, D. McClure, L. A. Jimenez, I. L. Megson, and I. Rahman, Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid Redox Signal. 7, 32 (2005).PubMedCrossRefGoogle Scholar
  66. 66.
    66. W. A. Wuyts, B. M. Vanaudenaerde, L. J. Dupont, M. G. Demedts, and G. M. Verleden, Involvement of p38 MAPK, JNK, p42/p44 ERK and NF-kappaB in IL-1β-induced chemokine release in human airway smooth muscle cells. Respir Med 97, 811 (2003).PubMedCrossRefGoogle Scholar
  67. 67.
    67. W. A. Wuyts, B. M. Vanaudenaerde, L. J. Dupont, D. E. Van Raemdonck, M. G. Demedts, and G. M. Verleden, Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: Role for mitogen-activated kinases and nuclear factor-kappaB. J Heart Lung Transplant 24, 875 (2005).PubMedCrossRefGoogle Scholar
  68. 68.
    68. F. Shen, X. Fan, B. Liu, X. Jia, H. Du, B. You, M. Ye, C. Huang, and X. Shi, Overexpression of cyclin D1-CDK4 in silica-induced transformed cells is due to activation of ERKs, JNKs/AP-1 pathway. Toxicol Lett 160, 185 (2006).PubMedCrossRefGoogle Scholar
  69. 69.
    69. S. Chakraborty, M. Roy, and R. K. Bhattacharya, Prevention and repair of DNA damage by selected phytochemicals as measured by single cell gel electrophoresis. J Environ Pathol Toxicol Oncol 23, 215 (2004).PubMedCrossRefGoogle Scholar
  70. 70.
    70. D. M. Brown, D. M., P. H. Beswick, and K. Donaldson, Induction of nuclear translocation of NF-kappaB in epithelial cells by respirable mineral fibres. J Pathol 189, 258 (1999).PubMedCrossRefGoogle Scholar
  71. 71.
    71. R. P. Schins, A. McAlinden, W. MacNee, L. A. Jimenez, J. A. Ross, K. Guy, S. P. Faux, and K. Donaldson, Persistent depletion of I kappa B alpha and interleukin-8 expression in human pulmonary epithelial cells exposed to quartz particles. Toxicol Appl Pharmacol 167, 107 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Narayanan Venkatesan
  • Durairaj Punithavathi
  • Mary Babu

There are no affiliations available

Personalised recommendations