CELL GROWTH REGULATION

  • Devarajan Karunagaran
  • Jeena Joseph
  • Thankayyan R. Santhosh Kumar
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 595)

Abstract

Curcumin, the active ingredient of turmeric (Curcuma longa) used in culinary and medical practices in Asia, has immense potential for being used in cancer chemotherapy because of its control over the cell growth regulatory mechanisms. The present chapter throws light on the role of curcumin in modulating the various phases of the cell cycle and its apoptosis-inducing effects. This is followed by a discussion on the implications of these effects of curcumin for its use as a chemotherapeutic agent in cancer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: getting back to the roots. Ann NY Acad Sci 1056, 206–217 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    2. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081–2087 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    3. M. Notoya, H. Nishimura, J. T. Woo, K. Nagai, Y. Ishihara, and H. Hagiwara, Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol 534, 55–62 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    4. J. S. Shim, J. Lee, H. J. Park, S. J. Park, and H. J. Kwon, A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem Biol 11, 1455–1463 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    5. T. Choudhuri, S. Pal, T. Das, and G. Sa, Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280, 20,059–20,068 (2005).CrossRefGoogle Scholar
  6. 6.
    6. Y. K. Kwon, J. M. Jun, S. W. Shin, J. W. Cho, and S. I. Suh, Curcumin decreases cell proliferation rates through BTG2-mediated cyclin D1 down-regulation in U937 cells. Int J Oncol 26, 1597–1603 (2005).PubMedGoogle Scholar
  7. 7.
    7. A. Chen and J. Xu, Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288, G447–G456 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    8. B. K. Batth, R. Tripathi and U. K. Srinivas, Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells. Differentiation 68, 133–140 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    9. F. Shen, X. Fan, B. Liu, X. Jia, H. Du, B. You, M. Ye, C. Huang, and X. Shi, Overexpression of cyclin D1-CDK4 in silica-induced transformed cells is due to activation of ERKs, JNKs/AP-1 pathway. Toxicol Lett 160, 185–195 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    10. M. Tomita, H. Kawakami, J. N. Uchihara, T. Okudaira, M. Masuda, N. Takasu, T. Matsuda, T. Ohta, Y. Tanaka, K. Ohshiro, and N. Mori, Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer 118, 765–772 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    11. M. Sun, Y. Yang, H. Li, B. Su, Y. Lu, Q. Wei, and T. Fan, [The effect of curcumin on bladder cancer cell line EJ in vitro]. Zhong Yao Cai 27, 848–850 (2004).PubMedGoogle Scholar
  12. 12.
    12. S. Shishodia, P. Potdar, C. G. Gairola, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269–1279 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    13. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053–1062 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    14. A. K. Singh, G. S. Sidhu, T. Deepa, and R. K. Maheshwari, Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett 107, 109–115 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    15. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    16. Y. Wu, Y. Chen, J. Xu, and L. Lu, Anticancer activities of curcumin on human Burkitt's lymphoma. Zhonghua Zhong Liu Za Zhi 24, 348–352 (2002).PubMedGoogle Scholar
  17. 17.
    17. S. Aggarwal, Y. Takada, S. Singh, J. N. Myers, and B. B. Aggarwal, Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 111, 679–692 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    18. S. Shishodia, H. M. Amin, R. Lai, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70, 700–713 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    19. H. Chen, Z. S. Zhang, Y. L. Zhang, and D. Y. Zhou, Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675–3680 (1999).PubMedGoogle Scholar
  20. 20.
    20. D. Morin, S. Barthelemy, R. Zini, S. Labidalle, and J. P. Tillement, Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495, 131–136 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    21. M. Zheng, S. Ekmekcioglu, E. T. Walch, C. H. Tang, and E. A. Grimm, Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14, 165–171 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    22. M. J. Van Erk, E. Teuling, Y. C. Staal, S. Huybers, P. J. Van Bladeren, J. M. Aarts, and B. Van Ommen, Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells. J Carcinog 3, 8 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    23. A. S. Jaiswal, B P. Marlow, N. Gupta, and S. Narayan, Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21, 8414–8427 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    24. A. Khafif, R. Hurst, K. Kyker, D. M. Fliss, Z. Gil, and J. E. Medina, Curcumin: A new radio-sensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132, 317–321 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    25. J. M. Holy, Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutat Res 518, 71–84 (2002).PubMedGoogle Scholar
  26. 26.
    26. C. Yan, M. S. Jamaluddin, B. Aggarwal, J. Myers, and D. D. Boyd, Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4, 233–241 (2005).PubMedGoogle Scholar
  27. 27.
    27. C. Ramachandran, H. B. Fonseca, P. Jhabvala, E. A. Escalon, and S. J. Melnick, Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 184, 1–6 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    28. K. Mehta, P. Pantazis, T. McQueen, and B. B. Aggarwal, Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470–481 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    29. E. L. White, L. J. Ross, S. M. Schmid, G. J. Kelloff, V. E. Steele, and D. L. Hill, Screening of potential cancer-preventing chemicals for inhibition of induction of ornithine decarboxylase in epithelial cells from rat trachea. Oncol Rep 5, 717–722 (1998).PubMedGoogle Scholar
  30. 30.
    30. M. Hasmeda and G. M. Polya, Inhibition of cyclic AMP-dependent protein kinase by curcumin. Phytochemistry 42, 599–605 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    31. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  32. 32.
    32. A. Nagao, M. Maeda, B. P. Lim, H. Kobayashi, and J. Terao, Inhibition of beta-carotene-15,15′-dioxygenase activity by dietary flavonoids. J Nutr Biochem 11, 348–355 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    33. R. L. Hong, W. H. Spohn, and M. C. Hung, Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin Cancer Res 5, 1884–1891 (1999).PubMedGoogle Scholar
  34. 34.
    34. S. C. Gautam, Y. X. Xu, K. R. Pindolia, N. Janakiraman, and R. A. Chapman, Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane). Biochem Pharmacol 55, 1333–1337 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    35. A. Khar, A. M. Ali, B. V. Pardhasaradhi, C. H. Varalakshmi, R. Anjum, and A. L. Kumari, Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates. Cell Stress Chaperones 6, 368–376 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    36. M. C. Jiang, H. F. Yang-Yen, J. J. Yen, and J. K. Lin, Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26, 111–120 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    37. C. Sun, X. Liu, Y. Chen, and F. Liu, Anticancer effect of curcumin on human B cell non-Hodgkin's lymphoma. J Huazhong Univ Sci Technolog Med Sci 25, 404–407 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    38. D. Karunagaran, R. Rashmi, and T. R. Kumar, Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 5, 117–129 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    39. J. A. Bush, K. J. Cheung, Jr., and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271, 305–314 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    40. L. Moragoda, R. Jaszewski, and A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 21, 873–878 (2001).PubMedGoogle Scholar
  41. 41.
    41. R. Rashmi, T. R. Santhosh Kumar, and D. Karunagaran, Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett 538, 19–24 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    42. S. Uddin, A. R. Hussain, P. S. Manogaran, K. Al-Hussein, L. C. Platanias, M. I. Gutierrez, and K. G. Bhatia, Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene 24, 7022–7030 (2005).PubMedCrossRefGoogle Scholar
  43. 43.
    43. R. J. Anto, A. Mukhopadhyay, K. Denning, and B. B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23, 143–150 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    44. M. L. Kuo, T. S. Huang, and J. K. Lin, Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1317, 95–100 (1996).PubMedGoogle Scholar
  45. 45.
    45. R. Rashmi, S. Kumar, and D. Karunagaran, Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. Carcinogenesis 25, 179–187 (2004).PubMedCrossRefGoogle Scholar
  46. 46.
    46. R. Rashmi, S. Kumar, S. and Karunagaran, D. (2004a) Ectopic expression of Bcl-XL or Ku70 protects human colon cancer cells (SW480) against curcumin-induced apoptosis while their down-regulation potentiates it. Carcinogenesis 25, 1867–1877 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    47. M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, and G. Ouyang, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int (2006).Google Scholar
  48. 48.
    48. G. Radhakrishna Pillai, A. S. Srivastava, T. I. Hassanein, D. P. Chauhan, and E. Carrier, Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208, 163–170 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    49. R. Anjum and A. Khar, Differential regulation of apoptosis in AK-5 tumor cells by the proto-oncogene Bcl-2: presence of Bcl-2 dependent and independent pathways. FEBS Lett 499, 166–170 (2001).PubMedCrossRefGoogle Scholar
  50. 50.
    50. S. Pal, T. Choudhuri, S. Chattopadhyay, A. Bhattacharya, G. K. Datta, T. Das, and G. Sa, Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells. Biochem Biophys Res Commun 288, 658–665 (2001).PubMedCrossRefGoogle Scholar
  51. 51.
    51. R. Rashmi, S. Kumar, and D. Karunagaran, Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downregulation of Bcl-XL. Carcinogenesis 26, 713–723 (2005).PubMedCrossRefGoogle Scholar
  52. 52.
    52. G. Song, Y. B. Mao, Q. F. Cai, L. M. Yao, G. L. Ouyang, and S. D. Bao, Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res 38, 1791–1798 (2005).PubMedCrossRefGoogle Scholar
  53. 53.
    53. L. D. Zheng, Q. S. Tong, K. X. Tao, L. Wang, and B. Zhang, [Effects of Smac gene overexpression on chemotherapeutic sensitivity of gastric cancer cell line MKN-45]. Ai Zheng 23, 361–366 (2004).PubMedGoogle Scholar
  54. 54.
    54. Q. Wang, A. Y. Sun, A. Simonyi, M. D. Jensen, P. B. Shelat, G. E. Rottinghaus, R. S. MacDonald, D. K. Miller, D. E. Lubahn, G. A. Weisman, and G. Y. Sun, Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82, 138–148 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    55. A. Sood, R. Mathew, and H. Trachtman, Cytoprotective effect of curcumin in human proximal tubule epithelial cells exposed to shiga toxin. Biochem Biophys Res Commun 283, 36–41 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    56. M. Shakibaei, G. Schulze-Tanzil, T. John, and A. Mobasheri, Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: An immunomorphological study. Ann Anat 187, 487–497 (2005).PubMedCrossRefGoogle Scholar
  57. 57.
    57. S. Fujisawa, T. Atsumi, M. Ishihara, and Y. Kadoma, Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 24, 563–569 (2004).PubMedGoogle Scholar
  58. 58.
    58. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    59. V. K. Shalini and L. Srinivas, Lipid peroxide induced DNA damage: Protection by turmeric (Curcuma longa). Mol Cell Biochem 77, 3–10 (1987).PubMedCrossRefGoogle Scholar
  60. 60.
    60. M. Subramanian, M. N. Sreejayan, Rao, T. P. Devasagayam, and B. B. Singh, Diminution of singlet oxygen-induced DNA damage by curcumin and related antioxidants. Mutat Res 311, 249–255 (1994).PubMedGoogle Scholar
  61. 61.
    61. A. C. Reddyand B. R. Lokesh, Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 32, 279–283 (1994).CrossRefGoogle Scholar
  62. 62.
    62. E. L. White, L. J. Ross, S. M. Schmid, G. J. Kelloff, V. E. Steele, and D. L. Hill, Screening of potential cancer preventing chemicals for induction of glutathione in rat liver cells. Oncol Rep 5, 507–512 (1998).PubMedGoogle Scholar
  63. 63.
    63. H. Ahsan, N. Parveen, N. U. Khan, and S. M. Hadi, Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121, 161–175 (1999).PubMedCrossRefGoogle Scholar
  64. 64.
    64. S. Bhaumik, R. Anjum, N. Rangaraj, B. V. Pardhasaradhi, and A. Khar, Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456, 311–314 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    65. U. Jacobi, T. Tassopoulos, C. Surber, and J. Lademann, Cutaneous distribution and localization of dyes affected by vehicles all with different lipophilicity. Arch Dermatol Res 297, 303–310 (2006).PubMedCrossRefGoogle Scholar
  66. 66.
    66. A. Paradkar, A. A. Ambike, B. K. Jadhav, and K R. Mahadik,) Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm 271, 281–286 (2004).PubMedCrossRefGoogle Scholar
  67. 67.
    67. K. U. Schallreuter and H. Rokos, Turmeric (curcumin): A widely used curry ingredient, can contribute to oxidative stress in Asian patients with acute vitiligo. Indian J Dermatol Venereol Leprol 72, 57–59 (2006).PubMedCrossRefGoogle Scholar
  68. 68.
    68. M. Moussavi, K. Assi, A. Gomez-Munoz, and B. Salh, Curcumin mediates ceramide generation via the de novo pathway in colon cancer cells. Carcinogenesis 27, 1636–1644 (2006).PubMedCrossRefGoogle Scholar
  69. 69.
    69. C. Syng-Ai, A. L. Kumari, and A. Khar, Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3, 1101–1108 (2004).PubMedGoogle Scholar
  70. 70.
    70. S. Somasundaram, N. A. Edmund, D. T. Moore, G. W. Small, Y. Y. Shi, and R. Z. Orlowski, Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62, 3868–3875 (2002).PubMedGoogle Scholar
  71. 71.
    71. M. S. Ahmad, Sheeba, and M Afzal, Amelioration of genotoxic damage by certain phytoproducts in human lymphocyte cultures. Chem Biol Interact 149, 107–115 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    72. E. Sikora, A. Bielak-Zmijewska, K. Piwocka, J. Skierski, J. and E. Radziszewska, Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol 54, 899–907 (1997).PubMedCrossRefGoogle Scholar
  73. 73.
    73. B. B. Aggarwal, Y. Takada, and O. V. Oommen, From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Invest Drugs 13, 1327–1338 (2004).CrossRefGoogle Scholar
  74. 74.
    74. C. Jobin, C. A. Bradham, M. P. Russo, B. Juma, A. S. Narula, D. A. Brenner, and R. B. Sartor, Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 163, 3474–3483 (1999).PubMedGoogle Scholar
  75. 75.
    75. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270, 24,995–25,000 (1995).CrossRefGoogle Scholar
  76. 76.
    76. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69, 195–206 (2006).PubMedGoogle Scholar
  77. 77.
    77. D. R. Siwak, S. Shishodia, B. B. Aggarwal, and R. Kurzrock, Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104, 879–890 (2005).PubMedCrossRefGoogle Scholar
  78. 78.
    78. A. Duvoix, F. Morceau, S. Delhalle, M. Schmitz, M. Schnekenburger, M. M. Galteau, M. Dicato, and M. Diederich, Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol 66, 1475–1483 (2003).PubMedCrossRefGoogle Scholar
  79. 79.
    79. B. B. Aggarwal, S. Shishodia, Y. Takada, S. Banerjee, R. A. Newman, C. E. Bueso-Ramos, and P. E. Price, Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490–7498 (2005).PubMedCrossRefGoogle Scholar
  80. 80.
    80. R. J. Anto, T. T. Maliekal, and D. Karunagaran, L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J Biol Chem 275, 15,601–15,604 (2000).CrossRefGoogle Scholar
  81. 81.
    81. D. Deeb, H. Jiang, X. Gao, M. S. Hafner, H. Wong, G. Divine, R. A. Chapman, S. A. Dulchavsky, andS. C. Gautam, Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 3, 803–812 (2004).PubMedGoogle Scholar
  82. 82.
    82. D. Deeb, Y. X. Xu, H. Jiang, X. Gao, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2, 95–103 (2003).PubMedGoogle Scholar
  83. 83.
    83. S.V. Bava, V. T. Puliappadamba, A. Deepti, A. Nair, D. Karunagaran, and R. J. Anto, Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280, 6301–6308 (2005).PubMedCrossRefGoogle Scholar
  84. 84.
    84. M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, and G. Ouyang, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30, 221–226 (2006).PubMedCrossRefGoogle Scholar
  85. 85.
    85. W. Henke, K. Ferrell, D. Bech-Otschir, M. Seeger, R. Schade, P. Jungblut, M. Naumann, and W. Dubiel,) Comparison of human COP9 signalsome and 26S proteasome lid'. Mol Biol Rep 26, 29–34 (1999).PubMedCrossRefGoogle Scholar
  86. 86.
    86. J. Rajasingh, H. P. Raikwar, G. Muthian, C. Johnson, and J. J. Bright, Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 340, 359–368 (2006).PubMedCrossRefGoogle Scholar
  87. 87.
    87. A. C. Bharti, N. Donato, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171, 3863–3871 (2003).PubMedGoogle Scholar
  88. 88.
    88. C. S. Divya and M. R. Pillai, Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog 45, 320–332 (2006).PubMedCrossRefGoogle Scholar
  89. 89.
    89. M. Tomita, H. Kawakami, J. N. Uchihara, T. Okudaira, M. Masuda, N. Takasu, T. Matsuda, T. Ohta, Y. Tanaka, and N. Mori, Curcumin suppresses constitutive activation of AP-1 by downregulation of JunD protein in HTLV-1-infected T-cell lines. Leuk Res 30, 313–321 (2006).PubMedCrossRefGoogle Scholar
  90. 90.
    90. C. Bernt, T. Vennegeerts, U. Beuers, and C. Rust, The human transcription factor AP-1 is a mediator of bile acid-induced liver cell apoptosis. Biochem Biophys Res Commun 340, 800–806 (2006).PubMedCrossRefGoogle Scholar
  91. 91.
    91. Y. R. Chen and T. H. Tan, Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17, 173–178 (1998).PubMedCrossRefGoogle Scholar
  92. 92.
    92. A. R. Hussain, M. Al-Rasheed, P. S. Manogaran, K. A. Al-Hussein, L. C. Platanias, K. A. Kuraya, and S. Uddin, Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in Acute T cell Leukemias. Apoptosis 11, 245–254 (2006).PubMedCrossRefGoogle Scholar
  93. 93.
    93. L. R. Chaudhary and K. A. Hruska, Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89, 1–5 (2003).PubMedCrossRefGoogle Scholar
  94. 94.
    94. L. Korutla and P. Kumar, Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1224, 597–600 (1994).PubMedCrossRefGoogle Scholar
  95. 95.
    95. A. Chen, J. Xu, and A. C. Johnson, Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25, 278–287 (2006).PubMedGoogle Scholar
  96. 96.
    96. D. W. Scott and G. Loo, Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 25, 2155–2164 (2004).PubMedCrossRefGoogle Scholar
  97. 97.
    97. G P. Collett and F. C. Campbell, Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25, 2183–2189 (2004).PubMedCrossRefGoogle Scholar
  98. 98.
    98. S. Zheng and A. Chen, Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 384, 149–157 (2004).PubMedCrossRefGoogle Scholar
  99. 99.
    99. S. Zheng and A. Chen, Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. Am J Physiol Gastrointest Liver Physiol 290, G883–893 (2005).PubMedCrossRefGoogle Scholar
  100. 100.
    100. L. Zheng, Q. Tong, and C. Wu, Growth-inhibitory effects of curcumin on ovary cancer cells and its mechanisms. J Huazhong Univ Sci Technolog Med Sci 24, 55–58 (2004).PubMedCrossRefGoogle Scholar
  101. 101.
    101. S. Sen, H. Sharma, and N. Singh, Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331, 1245–1252 (2005).PubMedCrossRefGoogle Scholar
  102. 102.
    102. T. C. Hour, J. Chen, C. Y. Huang, J. Y. Guan, S. H. Lu, and Y. S. Pu, Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate 51, 211–218 (2002).PubMedCrossRefGoogle Scholar
  103. 103.
    103. M. M. Chan, D. Fong, K. J. Soprano, W. F. Holmes, and H. Heverling, Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol 194, 63–70 (2003).PubMedCrossRefGoogle Scholar
  104. 104.
    104. J. Y. Koo, H. J. Kim, K. O. Jung, and K. Y. Park, Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food 7, 117–121 (2004).PubMedCrossRefGoogle Scholar
  105. 105.
    105. B. Du, L. Jiang, Q. Xia, and L. Zhong, Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy 52, 23–28 (2006).PubMedCrossRefGoogle Scholar
  106. 106.
    106. P. Limtrakul, S. Anuchapreeda, and D. Buddhasukh, Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4, 13 (2004).PubMedCrossRefGoogle Scholar
  107. 107.
    107. S. E. Chuang, P. Y. Yeh, Y. S. Lu, G. M. Lai, C. M. Liao, M. Gao, and A. L. Cheng, Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63, 1709–1716 (2002).PubMedCrossRefGoogle Scholar
  108. 108.
    108. S. Lev-Ari, L. Strier, D. Kazanov, O. Elkayam, D. Lichtenberg, D. Caspi, and N. Arber, Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology (Oxford) 45, 171–177 (2006).CrossRefGoogle Scholar
  109. 109.
    109. T. O. Khor, Y. S. Keum, W. Lin, J. H. Kim, R. Hu, G. Shen, C. Xu, A. Gopalakrishnan, B. Reddy, X. Zheng, A. H. Conney, and A. N. Kong, Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66, 613–621 (2006).PubMedCrossRefGoogle Scholar
  110. 110.
    110. J. H. Kim, C. Xu, Y. S. Keum, B. Reddy, A. Conney, and A. N. Kong, Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with β-phenylethyl isothiocyanate and curcumin. Carcinogenesis 27, 475–482 (2006).PubMedCrossRefGoogle Scholar
  111. 111.
    111. A. Spingarn, P. G. Sacks, D. Kelley, A. J. Dannenberg, and S. P. Schantz,) Synergistic effects of 13-cis retinoic acid and arachidonic acid cascade inhibitors on growth of head and neck squamous cell carcinoma in vitro. Otolaryngol Head Neck Surg 118, 159–164 (1998).PubMedCrossRefGoogle Scholar
  112. 112.
    112. Y. Liu, R. L. Chang, X. X. Cui, H. L. Newmark, and A. H. Conney, Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha,25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells. Oncol Res 9, 19–29 (1997).PubMedGoogle Scholar
  113. 113.
    113. D. Chendil, R. S. Ranga, D. Meigooni, S. Sathishkumar, and M. M. Ahmed, Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23, 1599–1607 (2004).PubMedCrossRefGoogle Scholar
  114. 114.
    114. C. Ramachandran, S. Rodriguez, R. Ramachandran, P. K. Raveendran Nair, H. Fonseca, Z. Khatib, E. Escalon, and S. J. Melnick, Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25, 3293–3302 (2005).PubMedGoogle Scholar
  115. 115.
    115. B. K. Adams, J. Cai, J. Armstrong, M. Herold, Y. J. Lu, A. Sun, J. P. Snyder, D. C. Liotta, D.P. Jones, and M. Shoji, EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16, 263–275 (2005).PubMedCrossRefGoogle Scholar
  116. 116.
    116. M. S. Furness, T. P. Robinson, T. Ehlers, R. B. T. Hubbard, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Antiangiogenic agents: Studies on fumagillin and curcumin analogs. Curr Pharm Des 11, 357–373 (2005).PubMedCrossRefGoogle Scholar
  117. 117.
    117. Q. S. Tong, L. D. Zheng, P. Lu, F. C. Jiang, F. M. Chen, F. Q. Zeng, L. Wang, and J. H. Dong, Apoptosis-inducing effects of curcumin derivatives in human bladder cancer cells. Anticancer Drugs 17, 279–287 (2006).PubMedCrossRefGoogle Scholar
  118. 118.
    118. W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, and D. L.Vander Jagt, Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13, 3811–3820 (2005).PubMedCrossRefGoogle Scholar
  119. 119.
    119. K. M. Youssef and M. A. El-Sherbeny, Synthesis and antitumor activity of some curcumin analogs. Arch Pharm (Weinheim) 338, 181–189 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Devarajan Karunagaran
  • Jeena Joseph
  • Thankayyan R. Santhosh Kumar

There are no affiliations available

Personalised recommendations