• Bharat B. Aggarwal
  • Chitra Sundaram
  • Nikita Malani
  • Haruyo Ichikawa


Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci 87, 44–50 (2004).Google Scholar
  2. 2.
    2. F. Abas, N. H. Lajis, K. Shaari, D. A. Israf, J. Stanslas, U. K. Yusuf, and S. M. Raof, A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 68, 1090–1093 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    3. W. J. Syu, C. C. Shen, M. J. Don, J. C. Ou, G. H. Lee, and C. M. Sun, Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod 61, 1531–1534 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    4. J. A. Duke, CRC Handbook of Medicinal Spices, 137–144 (2002). CRC Press.Google Scholar
  5. 5.
    5. C. Tohda, N. Nakayama, F. Hatanaka, and K. Komatsu, Comparison of anti-inflammatory activities of six curcuma rhizomes: A possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid Based Complement Alternat Med 3, 255–260 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    6. H. Mohamad, N. H. Lajis, F. Abas, A. M. Ali, M. A. Sukari, H. Kikuzaki, and N. Nakatani, Antioxidative constituents of Etlingera elatior. J Nat Prod 68, 285–288 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    7. T. Dechatowongse, Isolation of constituents from the rhizome of plai (Zingiber cassumunar Rpxb.). Bull Dept Med Sci 18, 75 (1976).Google Scholar
  8. 8.
    8. H. Ahsan, N. Parveen, N. U. Khan, and S. M. Hadi, Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121, 161–175 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    9. N. Sreejayan and M. N. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46, 169–171 (1996).PubMedGoogle Scholar
  10. 10.
    10. R. Thapliyal and G. B. Maru, Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem Toxicol 39, 541–547 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    11. M. T. Huang, Y. R. Lou, J. G. Xie, W. Ma, Y. P. Lu, P. Yen, B. T. Zhu, H. Newmark, and C. T. Ho, Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis 19, 1697–1700 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    12. Sreejayan and M. N. Rao, Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49, 105–107 (1997).PubMedGoogle Scholar
  13. 13.
    13. C. Ireson, S. Orr, D. J. Jones, R. Verschoyle, C. K. Lim, J. L. Luo, L. Howells, S. Plummer, R. Jukes, M. Williams, W. P. Steward, and A. Gescher, Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61, 1058–1064 (2001).PubMedGoogle Scholar
  14. 14.
    14. Y. Sugiyama, S. Kawakishi, and T. Osawa, Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52, 519–525 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    15. S. M. Khopde, K. I. Priyadarsini, S. N. Guha, J. G. Satav, P. Venkatesan, and M. N. Rao, Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem 64, 503–509 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    16. K. Okada, C. Wangpoengtrakul, T. Tanaka, S. Toyokuni, K. Uchida, and T. Osawa, Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131, 2090–2095 (2001).PubMedGoogle Scholar
  17. 17.
    17. L. Pari and P. Murugan, Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol Res 49, 481–486 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    18. L. Pari and D. R. Amali, Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. J Pharm Pharm Sci 8, 115–123 (2005).PubMedGoogle Scholar
  19. 19.
    19. Y. Nakamura, Y. Ohto, A. Murakami, T. Osawa, and H. Ohigashi, Inhibitory effects of curcumin and tetrahydrocurcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res 89, 361–370 (1998).PubMedGoogle Scholar
  20. 20.
    20. K. R. Chaudhri, Turmeric, haldi or haridra, in eye diseases., Antiseptic. 1950 Jan; 47(1), 67.Google Scholar
  21. 21.
    21. K. M. Nadkarni. Curcuma Longa in India Materia (1976) Popular Prakashan, 414–418 Mumbai.Google Scholar
  22. 22.
    22. C. Niederau and E. Gopfert, [The effect of chelidonium- and turmeric root extract on upper abdominal pain due to functional disorders of the biliary system. Results from a placebo-controlled double-blind study]. Med Klin (Munich) 94, 425–430 (1999).Google Scholar
  23. 23.
    23. C. Li, L. Li, J. Luo, and N. Huang, [Effect of turmeric volatile oil on the respiratory tract]. Zhongguo Zhong Yao Za Zhi 23, 624–625, inside back cover (1998).PubMedGoogle Scholar
  24. 24.
    24. Curcuma longa (turmeric). Monograph. Altern Med Rev 6(Suppl), S62–S66 (2001).Google Scholar
  25. 25.
    25. A. Tawatsin, S. D. Wratten, R. R. Scott, U. Thavara, and Y. Techadamrongsin, repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26, 76–82 (2001).PubMedGoogle Scholar
  26. 26.
    26. G. Bouvier, M. Hergenhahn, A. Polack, G. W. Bornkamm, and H. Bartsch, Validation of two test systems for detecting tumor promoters and EBV inducers: comparative responses of several agents in DR-CAT Raji cells and in human granulocytes. Carcinogenesis 14, 1573–1578 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    27. A. P. Saikia, V. K. Ryakala, P. Sharma, P. Goswami. and U. Bora, Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J Ethnopharmacol 106, 149–157 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    28. T. K. Biswas and B. Mukherjee, Plant medicines of Indian origin for wound healing activity: A review. Int J Low Extrem Wounds 2, 25–39 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    29. G. S. Sidhu, A. K. Singh, D. Thaloor, K. K. Banaudha, G. K. Patnaik, R. C. Srimal, and R. K. Maheshwari, Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6, 167–177 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    30. G. S. Sidhu, H. Mani, J. P. Gaddipati, A. K. Singh, P. Seth, K. K. Banaudha, G. K. Patnaik, and R. K. Maheshwari, Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7, 362–374 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    31. T. T. Phan, P. See, S. T. Lee, and S. Y. Chan, Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J Trauma 51, 927–931 (2001).PubMedGoogle Scholar
  32. 32.
    32. T. R. Fray, A. L. Watson, J. M. Croft, C. D. Baker, J. Bailey, N. Sirel, A. Tobias, and P. J. Markwell, A combination of aloe vera, curcumin, vitamin C, and taurine increases canine fibroblast migration and decreases tritiated water diffusion across canine keratinocytes in vitro. J Nutr 134, 2117S–2119S (2004).PubMedGoogle Scholar
  33. 33.
    33. D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, and R. Jayakumar, Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25, 1911–1917 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    34. G. C. Jagetia and G. K. Rajanikant, Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res 120, 127–138 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    35. G. C. Jagetia and G. K. Rajanikant, Effect of curcumin on radiation-impaired healing of excisional wounds in mice. J Wound Care 13, 107–109 (2004).PubMedGoogle Scholar
  36. 36.
    36. G. C. Jagetia and G. K. Rajanikant, Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gamma-irradiation. Plast Reconstr Surg 115, 515–528 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    37. A. Kumar, Y. Takada, A. M. Boriek, and B. B. Aggarwal, Nuclear factor-kappaB: Its role in health and disease. J Mol Med 82, 434–448 (2004).PubMedCrossRefGoogle Scholar
  38. 38.
    38. B. B. Aggarwal, Y. Takada, S. Shishodia, A. M. Gutierrez, O. V. Oommen, H. Ichikawa, Y. Baba, and A. Kumar, Nuclear transcription factor NF-kappa B: Role in biology and medicine. Indian J Exp Biol 42, 341–353 (2004).PubMedGoogle Scholar
  39. 39.
    39. H. P. Ammon, M. I. Anazodo, H. Safayhi, B. N. Dhawan, and R. C. Srimal, Curcumin: A potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med 58, 226 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    40. Y. Fujiyama-Fujiwara, R. Umeda, and O. Igarashi, Effects of sesamin and curcumin on delta 5-desaturation and chain elongation of polyunsaturated fatty acid metabolism in primary cultured rat hepatocytes. J Nutr Sci Vitaminol (Tokyo) 38, 353–363 (1992).Google Scholar
  41. 41.
    41. R. Srivastava, Inhibition of neutrophil response by curcumin. Agents Actions 28, 298–303 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    42. H. P. Ammon, H. Safayhi, T. Mack, and J. Sabieraj, Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 38, 113–119 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    43. A. C. Reddy and B. R. Lokesh, Studies on anti-inflammatory activity of spice principles and dietary n-3 polyunsaturated fatty acids on carrageenan-induced inflammation in rats. Ann Nutr Metab 38, 349–358 (1994).PubMedGoogle Scholar
  44. 44.
    44. B. Joe and B. R. Lokesh, Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32, 1173–1180 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    45. Y. X. Xu, K. R. Pindolia, N. Janakiraman, C. J. Noth, R. A. Chapman, and S. C. Gautam, Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol 25, 413–422 (1997).PubMedGoogle Scholar
  46. 46.
    46. B. Joe and B. R. Lokesh, Dietary n-3 fatty acids, curcumin and capsaicin lower the release of lysosomal enzymes and eicosanoids in rat peritoneal macrophages. Mol Cell Biochem 203, 153–161 (2000).PubMedCrossRefGoogle Scholar
  47. 47.
    47. E. A., Jones, A. Shahed, and D. A. Shoskes, Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology 56, 346–351 (2000).PubMedCrossRefGoogle Scholar
  48. 48.
    48. M. Banerjee, L. M. Tripathi, V. M. Srivastava, A. Puri, and R. Shukla, Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol 25, 213–224 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    49. R. C. Lantz, G. J. Chen, A. M. Solyom, S. D. Jolad, and B. N. Timmermann, The effect of turmeric extracts on inflammatory mediator production. Phytomedicine 12, 445–452 (2005).PubMedCrossRefGoogle Scholar
  50. 50.
    50. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270, 24,995–25,000 (1995).CrossRefGoogle Scholar
  51. 51.
    51. A. Bierhaus, Y. Zhang, P. Quehenberger, T. Luther, M. Haase, M. Muller, N. Mackman, R. Ziegler, and P. P. Nawroth, The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb Haemost 77, 772–782 (1997).PubMedGoogle Scholar
  52. 52.
    52. A. Munzenmaier, C. Lange, E. Glocker, A. Covacci, A. Moran, S. Bereswill, P. A. Baeuerle, M. Kist, and H. L. Pahl, A secreted/shed product of Helicobacter pylori activates transcription factor nuclear factor-kappa B. J Immunol 159, 6140–6147 (1997).PubMedGoogle Scholar
  53. 53.
    53. U. R. Pendurthi, J. T. Williams, and L. V. Rao, Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1, and NF-kappa B. Arterioscler Thromb Vasc Biol 17, 3406–3413 (1997).PubMedGoogle Scholar
  54. 54.
    54. Y. X. Xu, K. R. Pindolia, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol 11, 49–62 (1997).PubMedGoogle Scholar
  55. 55.
    55. P. Brennan and L. A. O'Neill, Inhibition of nuclear factor kappaB by direct modification in whole cells: Mechanism of action of nordihydroguaiaritic acid, curcumin and thiol modifiers. Biochem Pharmacol 55, 965–973 (1998).PubMedCrossRefGoogle Scholar
  56. 56.
    56. S. S. Han, S. T. Chung, D. A. Robertson, D. Ranjan, and S. Bondada, Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53. Clin Immunol 93, 152–161 (1999).PubMedCrossRefGoogle Scholar
  57. 57.
    57. C. Jobin, C. A. Bradham, M. P. Russo, B. Juma, A. S. Narula, D. A. Brenner, and R. B. Sartor, Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 163, 3474–3483 (1999).PubMedGoogle Scholar
  58. 58.
    58. S. M. Plummer, K. A. Holloway, M. M. Manson, R. J. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013–6020 (1999).PubMedCrossRefGoogle Scholar
  59. 59.
    59. Y. J. Surh, S. S. Han, Y. S. Keum, H. J. Seo, and S. S. Lee, Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappaB and AP-1. Biofactors 12, 107–112 (2000).PubMedGoogle Scholar
  60. 60.
    60. S. E. Chuang, P. Y. Yeh, Y. S. Lu, G. M. Lai, C. M. Liao, M. Gao, and A. L. Cheng, Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63, 1709–1716 (2002).PubMedCrossRefGoogle Scholar
  61. 61.
    61. A. Grandjean-Laquerriere, S. C. Gangloff, R. Le Naour, C. Trentesaux, W. Hornebeck, and M. Guenounou, Relative contribution of NF-kappaB and AP-1 in the modulation by curcumin and pyrrolidine dithiocarbamate of the UVB-induced cytokine expression by keratinocytes. Cytokine 18, 168–177 (2002).PubMedCrossRefGoogle Scholar
  62. 62.
    62. S. S. Han, Y. S. Keum, H. J. Seo, and Y. J. Surh, Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 35, 337–342 (2002).PubMedGoogle Scholar
  63. 63.
    63. T. C. Hour, J. Chen, C. Y. Huang, J. Y. Guan, S. H. Lu, and Y. S. Pu, Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate 51, 211–218 (2002).PubMedCrossRefGoogle Scholar
  64. 64.
    64. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24, 1515–1524 (2003).PubMedCrossRefGoogle Scholar
  65. 65.
    65. S. Philip and G. C. Kundu, Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem 278, 14,487–14,497 (2003).Google Scholar
  66. 66.
    66. S. Shishodia, P. Potdar, C. G. Gairola, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269–1279 (2003).PubMedCrossRefGoogle Scholar
  67. 67.
    67. A. Foryst-Ludwig, M. Neumann, W. Schneider-Brachert and M. Naumann, Curcumin blocks NF-kappaB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun 316, 1065–1072 (2004).PubMedCrossRefGoogle Scholar
  68. 68.
    68. I. A. Leclercq, G. C. Farrell, C. Sempoux, A. dela Pena, and Y. Horsmans, Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 41, 926–934 (2004).PubMedCrossRefGoogle Scholar
  69. 69.
    69. B. van't Land, N. M. Blijlevens, J. Marteijn, S. Timal, J. P. Donnelly, T. J. de Witte and L. M'Rabet, Role of curcumin and the inhibition of NF-kappaB in the onset of chemotherapy-induced mucosal barrier injury. Leukemia 18, 276–284 (2004).PubMedCrossRefGoogle Scholar
  70. 70.
    70. B. B. Aggarwal, S. Shishodia, Y. Takada, S. Banerjee, R. A. Newman, C. E. Bueso-Ramos and J. E. Price, Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490–7498 (2005).PubMedCrossRefGoogle Scholar
  71. 71.
    71. S. K. Biswas, D. McClure, L. A. Jimenez, I. L. Megson, and I. Rahman, Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7, 32–41 (2005).PubMedCrossRefGoogle Scholar
  72. 72.
    72. M. Farid, M. B. Reid, Y. P. Li, E. Gerken, and W. J. Durham, Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus. Nutr Metab (Lond) 2, 20 (2005).CrossRefGoogle Scholar
  73. 73.
    73. G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 174, 8116–8124 (2005).PubMedGoogle Scholar
  74. 74.
    74. K. W. Lee, J. H. Kim, H. J. Lee, and Y. J. Surh, Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid Redox Signal 7, 1612–1620 (2005).PubMedCrossRefGoogle Scholar
  75. 75.
    75. J. Lee, Y. H. Im, H. H. Jung, J. H. Kim, J. O. Park, K. Kim, W. S. Kim, J. S. Ahn, C. W. Jung, Y. S. Park, W. K. Kang, and K. Park, Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells. Biochem Biophys Res Commun 334, 313–318 (2005).PubMedCrossRefGoogle Scholar
  76. 76.
    76. M. M. LoTempio, M. S. Veena, H. L. Steele, B. Ramamurthy, T. S. Ramalingam, A. N. Cohen, R. Chakrabarti, E. S. Srivatsan, and M. B. Wang, Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11, 6994–7002 (2005).PubMedCrossRefGoogle Scholar
  77. 77.
    77. S. Shishodia, H. M. Amin, R. Lai, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70, 700–713 (2005).PubMedCrossRefGoogle Scholar
  78. 78.
    78. S. Wessler, P. Muenzner, T. F. Meyer, and M. Naumann, The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-kappaB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biol Chem 386, 481–490 (2005).PubMedCrossRefGoogle Scholar
  79. 79.
    79. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69, 195–206 (2006).PubMedGoogle Scholar
  80. 80.
    80. M. Tomita, H. Kawakami, J. N. Uchihara, T. Okudaira, M. Masuda, N. Takasu, T. Matsuda, T. Ohta, Y. Tanaka, K. Ohshiro, and N. Mori, Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer 118, 765–772 (2006).PubMedCrossRefGoogle Scholar
  81. 81.
    81. W. M. Weber, L. A. Hunsaker, C. N. Roybal, E. V. Bobrovnikova-Marjon, S. F. Abcouwer, R. E. Royer, L. M. Deck, and D. L. Vander Jagt, Activation of NFkappaB is inhibited by curcumin and related enones. Bioorg Med Chem 14, 2450–2461 (2006).PubMedCrossRefGoogle Scholar
  82. 82.
    82. W. Q. Li, F. Dehnade, and M. Zafarullah, Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol 166, 3491–3498 (2001).PubMedGoogle Scholar
  83. 83.
    83. A. C. Bharti, Y. Takada, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol 172, 5940–5947 (2004).PubMedGoogle Scholar
  84. 84.
    84. H. Y. Kim, E. J. Park, E. H. Joe, and I. Jou, Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 171, 6072–6079 (2003).PubMedGoogle Scholar
  85. 85.
    85. J. Rajasingh, H. P. Raikwar, G. Muthian, C. Johnson, and J. J. Bright, Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 340, 359–368 (2006).PubMedCrossRefGoogle Scholar
  86. 86.
    86. D. Chendil, R. S. Ranga, D. Meigooni, S. Sathishkumar, and M. M. Ahmed, Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23, 1599–1607 (2004).PubMedCrossRefGoogle Scholar
  87. 87.
    87. D. A. Dickinson, K. E. Iles, H. Zhang, V. Blank, and H. J. Forman, Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 17, 473–475 (2003).PubMedGoogle Scholar
  88. 88.
    88. B. K. Prusty and B. C. Das, Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 113, 951–960 (2005).PubMedCrossRefGoogle Scholar
  89. 89.
    89. M. Tomita, H. Kawakami, J. N. Uchihara, T. Okudaira, M. Masuda, N. Takasu, T. Matsuda, T. Ohta, Y. Tanaka, and N. Mori, Curcumin suppresses constitutive activation of AP-1 by downregulation of JunD protein in HTLV-1-infected T-cell lines. Leuk Res 30, 313–321 (2006).PubMedCrossRefGoogle Scholar
  90. 90.
    90. U. R. Pendurthi and L. V. Rao, Suppression of transcription factor Egr-1 by curcumin. Thromb Res 97, 179–189 (2000).PubMedCrossRefGoogle Scholar
  91. 91.
    91. E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam, and R. Motterlini, Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371, 887–895 (2003).PubMedCrossRefGoogle Scholar
  92. 92.
    92. J. Xu, Y. Fu, and A. Chen, Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 285, G20–G30 (2003).PubMedGoogle Scholar
  93. 93.
    93. S. Zheng and A. Chen, Activation of PPARγ is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 384, 149–157 (2004).PubMedCrossRefGoogle Scholar
  94. 94.
    94. A. Chen and J. Xu, Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288, G447–G456 (2005).PubMedCrossRefGoogle Scholar
  95. 95.
    95. A. S. Jaiswal, B. P. Marlow, N. Gupta, and S. Narayan, Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21, 8414–8427 (2002).PubMedCrossRefGoogle Scholar
  96. 96.
    96. C. H. Park, E. R. Hahm, S. Park, H. K. Kim, and C. H. Yang, The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 579, 2965–2971 (2005).PubMedCrossRefGoogle Scholar
  97. 97.
    97. M. M. Chan, Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49, 1551–1556 (1995).PubMedCrossRefGoogle Scholar
  98. 98.
    98. M. K. Jang, D. H. Sohn, and J. H. Ryu, A curcuminoid and sesquiterpenes as inhibitors of macrophage TNF-alpha release from Curcuma zedoaria. Planta Med 67, 550–552 (2001).PubMedCrossRefGoogle Scholar
  99. 99.
    99. H. Matsuda, S. Tewtrakul, T. Morikawa, A. Nakamura, and M. Yoshikawa, Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorg Med Chem 12, 5891–5898 (2004).PubMedCrossRefGoogle Scholar
  100. 100.
    100. A. Gulcubuk, K. Altunatmaz, K. Sonmez, D. Haktanir-Yatkin, H. Uzun, A. Gurel and S. Aydin, Effects of curcumin on tumour necrosis factor-alpha and interleukin-6 in the late phase of experimental acute pancreatitis. J Vet Med A Physiol Pathol Clin Med 53, 49–54 (2006).PubMedGoogle Scholar
  101. 101.
    101. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19, 150–156 (2003).PubMedCrossRefGoogle Scholar
  102. 102.
    102. C. J. Lee, J. H. Lee, J. H. Seok, G. M. Hur, Y. C. Park, I. C. Seol, and Y. H. Kim, Effects of baicalein, berberine, curcumin and hesperidin on mucin release from airway goblet cells. Planta Med 69, 523–526 (2003).PubMedCrossRefGoogle Scholar
  103. 103.
    103. N. Jurrmann, R. Brigelius-Flohe and G. F. Bol, Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 135, 1859–1864 (2005).PubMedGoogle Scholar
  104. 104.
    104. Y. Moon, W. C. Glasgow, and T. E. Eling, Curcumin suppresses interleukin 1beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmacol Exp Ther 315, 788–795 (2005).PubMedCrossRefGoogle Scholar
  105. 105.
    105. M. Shakibaei, G. Schulze-Tanzil, T. John and A. Mobasheri, Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: An immunomorphological study. Ann Anat 187, 487–497 (2005).PubMedGoogle Scholar
  106. 106.
    106. T. Kobayashi, S. Hashimoto and T. Horie, Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochem Pharmacol 54, 819–824 (1997).PubMedCrossRefGoogle Scholar
  107. 107.
    107. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41–47 (1999).PubMedCrossRefGoogle Scholar
  108. 108.
    108. H. Hidaka, T. Ishiko, T. Furuhashi, H. Kamohara, S. Suzuki, M. Miyazaki, O. Ikeda, S. Mita, T. Setoguchi, and M. Ogawa, Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface:impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95, 1206–1214 (2002).PubMedCrossRefGoogle Scholar
  109. 109.
    109. B. Y. Kang, S. W. Chung, W. Chung, S. Im, S. Y. Hwang, and T. S. Kim, Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol 384, 191–195 (1999).PubMedCrossRefGoogle Scholar
  110. 110.
    110. B. Y. Kang, Y. J. Song, K. M. Kim, Y. K. Choe, S. Y. Hwang and T. S. Kim, Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol 128, 380–384 (1999).PubMedCrossRefGoogle Scholar
  111. 111.
    111. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506–6513 (2002).PubMedGoogle Scholar
  112. 112.
    112. M. Tomita, B. J. Holman, C. P. Santoro, and T. J. Santoro, Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription. J Neuroinflammation 2, 8 (2005).PubMedCrossRefGoogle Scholar
  113. 113.
    113. M. K. Bae, S. H. Kim, J. W. Jeong, Y. M. Lee, H. S. Kim, S. R. Kim, I. Yun, S. K. Bae, and K. W. Kim, Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep 15, 1557–1562 (2006).PubMedGoogle Scholar
  114. 114.
    114. H. Choi, Y. S. Chun, S. W. Kim, M. S. Kim, and J. W. Park, Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: A mechanism of tumor growth inhibition. Mol Pharmacol 70(5), 1664–1671 (2006).PubMedCrossRefGoogle Scholar
  115. 115.
    115. S. Reddy and B. B. Aggarwal, Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341, 19–22 (1994).PubMedCrossRefGoogle Scholar
  116. 116.
    116. M. Hasmeda and G. M. Polya, Inhibition of cyclic AMP-dependent protein kinase by curcumin. Phytochemistry 42, 599–605 (1996).PubMedCrossRefGoogle Scholar
  117. 117.
    117. Y. R. Chen and T. H. Tan, Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17, 173–178 (1998).PubMedCrossRefGoogle Scholar
  118. 118.
    118. M. S. Squires, E. A. Hudson, L. Howells, S. Sale, C. E. Houghton, J. L. Jones, L. H. Fox, M. Dickens, S. A. Prigent, and M. M. Manson, Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65, 361–376 (2003).PubMedCrossRefGoogle Scholar
  119. 119.
    119. T. H. Leu, S. L. Su, Y. C. Chuang, and M. C. Maa, Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem Pharmacol 66, 2323–2331 (2003).PubMedCrossRefGoogle Scholar
  120. 120.
    120. M. Hu, Q. Du, I. Vancurova, X. Lin, E. J. Miller, H. H. Simms, and P. Wang, Proapoptotic effect of curcumin on human neutrophils: activation of the p38 mitogen-activated protein kinase pathway. Crit Care Med 33, 2571–2578 (2005).PubMedCrossRefGoogle Scholar
  121. 121.
    121. L. R. Chaudhary and K. A. Hruska, Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89, 1–5 (2003).PubMedCrossRefGoogle Scholar
  122. 122.
    122. J. Y. Liu, S. J. Lin, and J. K. Lin, Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857–861 (1993).PubMedCrossRefGoogle Scholar
  123. 123.
    123. K. J. Mistry, M. Krishna, and R. K. Bhattacharya, Modulation of aflatoxin B1 activated protein kinase C by phenolic compounds. Cancer Lett 121, 99–104 (1997).PubMedCrossRefGoogle Scholar
  124. 124.
    124. P. Varadkar, P. Dubey, M. Krishna, and N. Verma, Modulation of radiation-induced protein kinase C activity by phenolics. J Radiol Prot 21, 361–370 (2001).PubMedCrossRefGoogle Scholar
  125. 125.
    125. J. K. Lin, Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin. Arch Pharm Res 27, 683–692 (2004).PubMedGoogle Scholar
  126. 126.
    126. S. A. Rushworth, R. M. Ogborne, C. A. Charalambos, and M. A. O'Connell, Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341, 1007–1016 (2006).PubMedCrossRefGoogle Scholar
  127. 127.
    127. R. L. Hong, W. H. Spohn, and M. C. Hung, Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin Cancer Res 5, 1884–1891 (1999).PubMedGoogle Scholar
  128. 128.
    128. T. Dorai, N. Gehani, and A. Katz, Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol Urol 4, 1–6 (2000).PubMedGoogle Scholar
  129. 129.
    129. S. Kaul and T. P. Krishnakanth, Effect of retinol deficiency and curcumin or turmeric feeding on brain Na(+)−K+ adenosine triphosphatase activity. Mol Cell Biochem 137, 101–107 (1994).PubMedCrossRefGoogle Scholar
  130. 130.
    130. J. G. Bilmen, S. Z. Khan, M. H. Javed, and F. Michelangeli, Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur J Biochem 268, 6318–6327 (2001).PubMedCrossRefGoogle Scholar
  131. 131.
    131. M. J. Logan-Smith, P. J. Lockyer, J. M. East and A. G. Lee, Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2 +. J Biol Chem 276, 46,905–46.911 (2001).Google Scholar
  132. 132.
    132. Y. A. Mahmmoud, Curcumin modulation of Na, K-ATPase: phosphoenzyme accumulation, decreased K+ occlusion, and inhibition of hydrolytic activity. Br J Pharmacol 145, 236–245 (2005).PubMedCrossRefGoogle Scholar
  133. 133.
    133. J. Kang, J. Chen, Y. Shi, J. Jia, and Y. Zhang, Curcumin-induced histone hypoacetylation: The role of reactive oxygen species. Biochem Pharmacol 69, 1205–1213 (2005).PubMedCrossRefGoogle Scholar
  134. 134.
    134. W. H. Liu, X. M. Chen, and B. Fu, Thrombin stimulates MMP-9 mRNA expression through AP-1 pathway in human mesangial cells. Acta Pharmacol Sin 21, 641–645 (2000).PubMedGoogle Scholar
  135. 135.
    135. S. Shimizu, S. Jareonkitmongkol, H. Kawashima, K. Akimoto, and H. Yamada, Inhibitory effect of curcumin on fatty acid desaturation in Mortierella alpina 1S-4 and rat liver microsomes. Lipids 27, 509–512 (1992).PubMedCrossRefGoogle Scholar
  136. 136.
    136. H. Kawashima, K. Akimoto, S. Jareonkitmongkol, N. Shirasaka, and S. Shimizu, Inhibition of rat liver microsomal desaturases by curcumin and related compounds. Biosci Biotechnol Biochem 60, 108–110 (1996).PubMedGoogle Scholar
  137. 137.
    137. X. Chen, T. Hasuma, Y. Yano, T. Yoshimata, Y. Morishima, Y. Wang, and S. Otani, Inhibition of farnesyl protein transferase by monoterpene, curcumin derivatives and gallotannin. Anticancer Res 17, 2555–2564 (1997).PubMedGoogle Scholar
  138. 138.
    138. H. M. Kang, K. H. Son, D. C. Yang, D. C. Han, J. H. Kim, N. I. Baek, and B. M. Kwon, Inhibitory activity of diarylheptanoids on farnesyl protein transferase. Nat Prod Res 18, 295–299 (2004).PubMedCrossRefGoogle Scholar
  139. 139.
    139. M. Susan and M. N. Rao, Induction of glutathione S-transferase activity by curcumin in mice. Arzneimittelforschung 42, 962–964 (1992).PubMedGoogle Scholar
  140. 140.
    140. M. L. Iersel, J. P. Ploemen, I. Struik, C. van Amersfoort, A. E. Keyzer, J. G. Schefferlie, and P. J. van Bladeren, Inhibition of glutathione S-transferase activity in human melanoma cells by alpha, beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem Biol Interact 102, 117–132 (1996).PubMedCrossRefGoogle Scholar
  141. 141.
    141. J. T. Piper, S. S. Singhal, M. S. Salameh, R. T. Torman, Y. C. Awasthi, and S. Awasthi, Mechanisms of anticarcinogenic properties of curcumin: The effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int J Biochem Cell Biol 30, 445–456 (1998).PubMedCrossRefGoogle Scholar
  142. 142.
    142. S. S. Singhal, S. Awasthi, U. Pandya, J. T. Piper, M. K. Saini, J. Z. Cheng, and Y. C. Awasthi, The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells. Toxicol Lett 109, 87–95 (1999).PubMedCrossRefGoogle Scholar
  143. 143.
    143. S. Awasthi, U. Pandya, S. S. Singhal, J. T. Lin, V. Thiviyanathan, W. E. Seifert, Jr., Y. C. Awasthi, and G. A. Ansari, Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Interact 128, 19–38 (2000).PubMedCrossRefGoogle Scholar
  144. 144.
    144. R. A. Sharma, C. R. Ireson, R. D. Verschoyle, K. A. Hill, M. L. Williams, C. Leuratti, M. M. Manson, L. J. Marnett, W. P. Steward, and A. Gescher, Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels. Clin Cancer Res 7, 1452–1458 (2001).PubMedGoogle Scholar
  145. 145.
    145. A. Duvoix, F. Morceau, S. Delhalle, M. Schmitz, M. Schnekenburger, M. M. Galteau, M. Dicato, and M. Diederich, Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol 66, 1475–1483 (2003).PubMedCrossRefGoogle Scholar
  146. 146.
    146. R. Blasius, A. Duvoix, F. Morceau, M. Schnekenburger, S. Delhalle, E. Henry, M. Dicato, and M. Diederich, Curcumin stability and its effect on glutathione S-transferase P1-1 mRNA expression in K562 cells. Ann N Y Acad Sci 1030, 442–448 (2004).PubMedCrossRefGoogle Scholar
  147. 147.
    147. N. Hill-Kapturczak, V. Thamilselvan, F. Liu, H. S. Nick and A. Agarwal, Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am J Physiol Renal Physiol 281, F851–F859 (2001).PubMedGoogle Scholar
  148. 148.
    148. G. Scapagnini, R. Foresti, V. Calabrese, A. M. Giuffrida Stella, C. J. Green and R. Motterlini, Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61, 554–561 (2002).PubMedCrossRefGoogle Scholar
  149. 149.
    149. E. Balogun, R. Foresti, C. J. Green, and R. Motterlini, Changes in temperature modulate heme oxygenase-1 induction by curcumin in renal epithelial cells. Biochem Biophys Res Commun 308, 950–955 (2003).PubMedCrossRefGoogle Scholar
  150. 150.
    150. V. Calabrese, D. A. Butterfield, and A. M. Stella, Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: Novel targets for neuroprotection in Alzheimer's disease. Ital J Biochem 52, 177–181 (2003).PubMedGoogle Scholar
  151. 151.
    151. J. Gaedeke, N. A. Noble, and W. A. Border, Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney Int 68, 2042–2049 (2005).PubMedCrossRefGoogle Scholar
  152. 152.
    152. H. Yamamoto, K. Hanada, K. Kawasaki, and M. Nishijima, Inhibitory effect on curcumin on mammalian phospholipase D activity. FEBS Lett 417, 196–198 (1997).PubMedCrossRefGoogle Scholar
  153. 153.
    153. Y. P. Lu, R. L. Chang, M. T. Huang, and A. H. Conney, Inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced increase in ornithine decarboxylase mRNA in mouse epidermis. Carcinogenesis 14, 293–297 (1993).PubMedCrossRefGoogle Scholar
  154. 154.
    154. C. V. Rao, B. Simi, and B. S. Reddy, Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis 14, 2219–2225 (1993).PubMedCrossRefGoogle Scholar
  155. 155.
    155. C. Ishizaki, T. Oguro, T. Yoshida, C. Q. Wen, H. Sueki, and M. Iijima, Enhancing effect of ultraviolet A on ornithine decarboxylase induction and dermatitis evoked by 12-O-tetradecanoylphorbol-13-acetate and its inhibition by curcumin in mouse skin. Dermatology 193, 311–317 (1996).PubMedCrossRefGoogle Scholar
  156. 156.
    156. Y. Okazaki, M. Iqbal and S. Okada, Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim Biophys Acta 1740, 357–366 (2005).PubMedGoogle Scholar
  157. 157.
    157. C. Ramachandran, H. B. Fonseca, P. Jhabvala, E. A. Escalon, and S. J. Melnick, Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 184, 1–6 (2002).PubMedCrossRefGoogle Scholar
  158. 158.
    158. S. Chakraborty, U. Ghosh, N. P. Bhattacharyya, R. K. Bhattacharya, and M. Roy, Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res 596, 81–90 (2006).PubMedGoogle Scholar
  159. 159.
    159. J. K. Lin and C. A. Shih, Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NIH3T3 cells. Carcinogenesis 15, 1717–2171 (1994).PubMedCrossRefGoogle Scholar
  160. 160.
    160. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti–inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).PubMedCrossRefGoogle Scholar
  161. 161.
    161. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955–1962 (1998).PubMedCrossRefGoogle Scholar
  162. 162.
    162. K. F. Soliman and E. A. Mazzio, In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med 218, 390–397 (1998).PubMedGoogle Scholar
  163. 163.
    163. M. Onoda and H. Inano, Effect of curcumin on the production of nitric oxide by cultured rat mammary gland. Nitric Oxide 4, 505–515 (2000).PubMedCrossRefGoogle Scholar
  164. 164.
    164. M. H. Pan, S. Y. Lin-Shiau and J. K. Lin, Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60, 1665–1676 (2000).PubMedCrossRefGoogle Scholar
  165. 165.
    165. H. Narang and M. Krishna, Inhibition of radiation induced nitration by curcumin and nicotinamide in mouse macrophages. Mol Cell Biochem 276, 7–13 (2005).PubMedCrossRefGoogle Scholar
  166. 166.
    166. A. Mukhopadhyay, S. Banerjee, L. J. Stafford, C. Xia, M. Liu, and B. B. Aggarwal, Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21, 8852–8861 (2002).PubMedCrossRefGoogle Scholar
  167. 167.
    167. T. Choudhuri, S. Pal, T. Das, and G. Sa, Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280, 20,059–20,068 (2005).CrossRefGoogle Scholar
  168. 168.
    168. Y. K. Kwon, J. M. Jun, S. W. Shin, J. W. Cho, and S. I. Suh, Curcumin decreases cell proliferation rates through BTG2-mediated cyclin D1 down-regulation in U937 cells. Int J Oncol 26, 1597–1603 (2005).PubMedGoogle Scholar
  169. 169.
    169. D. Bech-Otschir, R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, and W. Dubiel, COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. Embo J 20, 1630–1639 (2001).PubMedCrossRefGoogle Scholar
  170. 170.
    170. P. J. Moos, K. Edes, J. E. Mullally, and F. A. Fitzpatrick, Curcumin impairs tumor suppressor p53 function in colon cancer cells. Carcinogenesis 25, 1611–1617 (2004).PubMedCrossRefGoogle Scholar
  171. 171.
    171. P. Tsvetkov, G. Asher, V. Reiss, Y. Shaul, L. Sachs, and J. Lotem, Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102, 5535–5540 (2005).PubMedCrossRefGoogle Scholar
  172. 172.
    172. S. S. Kakar and D. Roy, Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin. Cancer Lett 87, 85–59 (1994).PubMedCrossRefGoogle Scholar
  173. 173.
    173. M. T. Huang, W. Ma, Y. P. Lu, R. L. Chang, C. Fisher, P. S. Manchand, H. L. Newmark, and A. H. Conney, Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16, 2493–2497 (1995).PubMedCrossRefGoogle Scholar
  174. 174.
    174. Y. P. Lu, R. L. Chang, Y. R. Lou, M. T. Huang, H. L. Newmark, K. R. Reuhl, and A. H. Conney, Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate- and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis. Carcinogenesis 15, 2363–2370 (1994).PubMedCrossRefGoogle Scholar
  175. 175.
    175. P. Limtrakul, S. Anuchapreeda, S. Lipigorngoson and F. W. Dunn, Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin. BMC Cancer 1, 1 (2001).PubMedCrossRefGoogle Scholar
  176. 176.
    176. K. Nakamura, Y. Yasunaga, T. Segawa, D. Ko, J. W. Moul, S. Srivastava, and J. S. Rhim, Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21, 825–830 (2002).PubMedGoogle Scholar
  177. 177.
    177. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  178. 178.
    178. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445–451 (1999).PubMedCrossRefGoogle Scholar
  179. 179.
    179. A. Goel, C. R. Boland, and D. P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172, 111–118 (2001).PubMedCrossRefGoogle Scholar
  180. 180.
    180. J. W. Cho, K. Park, G. R. Kweon, B. C. Jang, W. K. Baek, M. H. Suh, C. W. Kim, K. S. Lee, and S. I. Suh, Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37, 186–192 (2005).PubMedGoogle Scholar
  181. 181.
    181. R. G. Tunstall, R. A. Sharma, S. Perkins, S. Sale, R. Singh, P. B. Farmer, W. P. Steward, and A. J. Gescher, Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: Modification by dietary curcumin and implications for clinical trials. Eur J Cancer 42, 415–421 (2006).PubMedCrossRefGoogle Scholar
  182. 182.
    182. D. L. Flynn, M. F. Rafferty, and A. M. Boctor, Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: inhibitory activities of curcuminoids and yakuchinones. Prostaglandins Leukot Med 22, 357–360 (1986).PubMedCrossRefGoogle Scholar
  183. 183.
    183. J. Hong, M. Bose, J. Ju, J. H. Ryu, X. Chen, S. Sang, M. J. Lee, and C. S. Yang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671–1679 (2004).PubMedCrossRefGoogle Scholar
  184. 184.
    184. N. S. Prasad, R. Raghavendra, B. R. Lokesh, and K. A. Naidu, Spice phenolics inhibit human PMNL 5-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 70, 521–528 (2004).PubMedCrossRefGoogle Scholar
  185. 185.
    185. P. F. Firozi, V. S. Aboobaker, and R. K. Bhattacharya, Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem Biol Interact 100, 41–51 (1996).PubMedCrossRefGoogle Scholar
  186. 186.
    186. H. P. Ciolino, P. J. Daschner, T. T. Wang, and G. C. Yeh, Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56, 197–206 (1998).PubMedCrossRefGoogle Scholar
  187. 187.
    187. R. Thapliyal, S. S. Deshpande, and G. B. Maru, Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. J Environ Pathol Toxicol Oncol 20, 59–63 (2001).PubMedGoogle Scholar
  188. 188.
    188. T. Sugiyama, J. Nagata, A. Yamagishi, K. Endoh, M. Saito, K. Yamada, S. Yamada, and K. Umegaki, Selective protection of curcumin against carbon tetrachloride-induced inactivation of hepatic cytochrome P450 isozymes in rats. Life Sci 78, 2188–2193 (2006).PubMedCrossRefGoogle Scholar
  189. 189.
    189. M. J. Van Erk, E. Teuling, Y. C. Staal, S. Huybers, P. J. Van Bladeren, J. M. Aarts, and B. Van Ommen, Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells. J Carcinog 3, 8 (2004).PubMedCrossRefGoogle Scholar
  190. 190.
    190. C. Yan, M. S. Jamaluddin, B. Aggarwal, J. Myers, and D. D. Boyd, Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4, 233–241 (2005).PubMedGoogle Scholar
  191. 191.
    191. H. M. Wortelboer, M. Usta, A. E. van der Velde, M. G. Boersma, B. Spenkelink, J. J. van Zanden, I. M. Rietjens, P. J. van Bladeren, and N. H. Cnubben, Interplay between MRP inhibition and metabolism of MRP inhibitors: the case of curcumin. Chem Res Toxicol 16, 1642–1651 (2003).PubMedCrossRefGoogle Scholar
  192. 192.
    192. W. Chearwae, S. Anuchapreeda, K. Nandigama, S. V. Ambudkar, and P. Limtrakul, Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem Pharmacol 68, 2043–2052 (2004).PubMedCrossRefGoogle Scholar
  193. 193.
    193. P. Limtrakul, S. Anuchapreeda, and D. Buddhasukh, Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4, 13 (2004).PubMedCrossRefGoogle Scholar
  194. 194.
    194. W. Chearwae, C. P. Wu, H. Y. Chu, T. R. Lee, S. V. Ambudkar, and P. Limtrakul, Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother Pharmacol 57, 376–388 (2006).PubMedCrossRefGoogle Scholar
  195. 195.
    195. X. Q. Tang, H. Bi, J. Q. Feng, and J. G. Cao, Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin 26, 1009–1016 (2005).PubMedCrossRefGoogle Scholar
  196. 196.
    196. J. Lee, H. H. Jung, Y. H. Im, J. H. Kim, J. O. Park, K. Kim, W. S. Kim, J. S. Ahn, C. W. Jung, Y. S. Park, W. K. Kang, and K. Park, Interferon-alpha resistance can be reversed by inhibition of IFN-alpha-induced COX-2 expression potentially via STAT1 activation in A549 cells. Oncol Rep 15, 1541–1549 (2006).PubMedGoogle Scholar
  197. 197.
    197. C. Park, G. Y. Kim, G. D. Kim, B. T. Choi, Y. M. Park, and Y. H. Choi, Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells. Oncol Rep 15, 1225–1231 (2006).PubMedGoogle Scholar
  198. 198.
    198. W. J. Durham, S. Arbogast, E. Gerken, Y. P. Li, and M. B. Reid, Progressive nuclear factor-kappaB activation resistant to inhibition by contraction and curcumin in mdx mice. Muscle Nerve 34(3), 298–303 (2006).PubMedCrossRefGoogle Scholar
  199. 199.
    199. C. C. Su, G. W. Chen, J. G. Lin, L. T. Wu, and J. G. Chung, Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res 26, 1281–1288 (2006).PubMedGoogle Scholar
  200. 200.
    200. N. Chakravarti, J. N. Myers, and B. B. Aggarwal, Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int J Cancer 119(6), 1268–1275 (2006).PubMedCrossRefGoogle Scholar
  201. 201.
    201. A. M. Siddiqui, X. Cui, R. Wu, W. Dong, M. Zhou, M. Hu, H. H. Simms, and P. Wang, The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma*. Crit Care Med 34(7), 1874–1882 (2006).PubMedCrossRefGoogle Scholar
  202. 202.
    202. H. C. Huang, T. R. Jan, and S. F. Yeh, Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur J Pharmacol 221, 381–384 (1992).PubMedCrossRefGoogle Scholar
  203. 203.
    203. L. Korutla and R. Kumar, Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1224, 597–600 (1994).PubMedCrossRefGoogle Scholar
  204. 204.
    204. J. F. Santibanez, M. Quintanilla, and J. Martinez, Genistein and curcumin block TGF-beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr Cancer 37, 49–54 (2000).PubMedCrossRefGoogle Scholar
  205. 205.
    205. R. Mohan, J. Sivak, P. Ashton, L. A. Russo, B. Q. Pham, N. Kasahara, M. B. Raizman, and M. E. Fini, Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 275, 10,405–10,512 (2000).CrossRefGoogle Scholar
  206. 206.
    206. S. C. Shih and K. P. Claffey, Role of AP-1 and HIF-1 transcription factors in TGF-beta activation of VEGF expression. Growth Factors 19, 19–34 (2001).PubMedGoogle Scholar
  207. 207.
    207. H. Mani, G. S. Sidhu, R. Kumari, J. P. Gaddipati, P. Seth and R. K. Maheshwari, Curcumin differentially regulates TGF-beta1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors 16, 29–43 (2002).PubMedGoogle Scholar
  208. 208.
    208. A. E. Gururaj, M. Belakavadi, D. A. Venkatesh, D. Marme, and B. P. Salimath, Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297, 934–942 (2002).PubMedCrossRefGoogle Scholar
  209. 209.
    209. J. Gaedeke, N. A. Noble, and W. A. Border, Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney Int 66, 112–120 (2004).PubMedCrossRefGoogle Scholar
  210. 210.
    210. P. C. Smith, J. F. Santibanez, J. P. Morales, and J. Martinez, Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin. J Periodontal Res 39, 380–387 (2004).PubMedCrossRefGoogle Scholar
  211. 211.
    211. A. Chen, J. Xu, and A. C. Johnson, Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25, 278–287 (2006).PubMedGoogle Scholar
  212. 212.
    212. J. H. Kim, C. Xu, Y. S. Keum, B. Reddy, A. Conney, and A. N. Kong, Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin. Carcinogenesis 27, 475–482 (2006).PubMedCrossRefGoogle Scholar
  213. 213.
    213. S. Zheng and A. Chen, Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. Am J Physiol Gastrointest Liver Physiol 290, G883–G893 (2006).PubMedCrossRefGoogle Scholar
  214. 214.
    214. A. Masamune, N. Suzuki, K. Kikuta, M. Satoh, K. Satoh, and T. Shimosegawa, Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem 97, 1080–1093 (2006).PubMedCrossRefGoogle Scholar
  215. 215.
    215. X. Yang, D. P. Thomas, X. Zhang, B. W. Culver, B. M. Alexander, W. J. Murdoch, M. N. Rao, D. A. Tulis, J. Ren, and N. Sreejayan, Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26, 85–90 (2006).PubMedCrossRefGoogle Scholar
  216. 216.
    216. Y. Takada, A. Bhardwaj, P. Potdar, and B. B. Aggarwal, Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 23, 9247–9258 (2004).PubMedGoogle Scholar
  217. 217.
    217. J. M. Dogne, J. Hanson, C. Supuran, and D. Pratico, Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 12, 971–975 (2006).PubMedCrossRefGoogle Scholar
  218. 218.
    218. A. T. Chan, J. E. Manson, C. M. Albert, C. U. Chae, K. M. Rexrode, G. C. Curhan, E. B. Rimm, W. C. Willett, and C. S. Fuchs, Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events. Circulation 113, 1578–1587 (2006).PubMedCrossRefGoogle Scholar
  219. 219.
    219. M. Hermann and F. Ruschitzka, Coxibs, non-steroidal anti-inflammatory drugs and cardiovascular risk. Intern Med J 36, 308–319 (2006).PubMedCrossRefGoogle Scholar
  220. 220.
    220. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol 21, 745–757 (1999).PubMedCrossRefGoogle Scholar
  221. 221.
    221. B. Madan and B. Ghosh, Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock 19, 91–96 (2003).PubMedCrossRefGoogle Scholar
  222. 222.
    222. B. Fuller, S. Dijk, P. Butler, V. Hoang, and B. Davidson, Pro-inflammatory agents accumulate during donor liver cold preservation: A study on increased adhesion molecule expression and abrogation by curcumin in cultured endothelial cells. Cryobiology 46, 284–288 (2003).PubMedCrossRefGoogle Scholar
  223. 223.
    223. O. P. Sharma, Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25, 1811–1812 (1976).PubMedCrossRefGoogle Scholar
  224. 224.
    224. V. K. Shalini and L. Srinivas, Lipid peroxide induced DNA damage: protection by turmeric (Curcuma longa). Mol Cell Biochem 77, 3–10 (1987).PubMedCrossRefGoogle Scholar
  225. 225.
    225. M. Nagabhushan, U. J. Nair, A. J. Amonkar, A. V. D'Souza, and S. V. Bhide, Curcumins as inhibitors of nitrosation in vitro. Mutat Res 202, 163–169 (1988).PubMedGoogle Scholar
  226. 226.
    226. I. A. Donatus, Sardjoko, and N. P. Vermeulen, Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes. Biochem Pharmacol 39, 1869–1875 (1990).PubMedCrossRefGoogle Scholar
  227. 227.
    227. S. C. Sahu and M. C. Washington, Effect of ascorbic acid and curcumin on quercetin-induced nuclear DNA damage, lipid peroxidation and protein degradation. Cancer Lett 63, 237–241 (1992).PubMedCrossRefGoogle Scholar
  228. 228.
    228. K. K. Soudamini, M. C. Unnikrishnan, K. B. Soni, and R. Kuttan, Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36, 239–243 (1992).PubMedGoogle Scholar
  229. 229.
    229. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrite-induced methemoglobin formation. FEBS Lett 301, 195–196 (1992).PubMedCrossRefGoogle Scholar
  230. 230.
    230. B. Joe and B. R. Lokesh, Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224, 255–263 (1994).PubMedCrossRefGoogle Scholar
  231. 231.
    231. D. V. Rajakumar and M. N. Rao, Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates. Mol Cell Biochem 140, 73–79 (1994).PubMedCrossRefGoogle Scholar
  232. 232.
    232. A. C. Reddy and B. R. Lokesh, Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 32, 279–283 (1994).PubMedCrossRefGoogle Scholar
  233. 233.
    233. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).PubMedCrossRefGoogle Scholar
  234. 234.
    234. Sreejayan and M. N. Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013–1016 (1994).PubMedGoogle Scholar
  235. 235.
    235. R. Selvam, L. Subramanian, R. Gayathri, and N. Angayarkanni, The anti-oxidant activity of turmeric (Curcuma longa). J Ethnopharmacol 47, 59–67 (1995).PubMedCrossRefGoogle Scholar
  236. 236.
    236. M. K. Unnikrishnan and M. N. Rao, Inhibition of nitrite induced oxidation of hemoglobin by curcuminoids. Pharmazie 50, 490–492 (1995).PubMedGoogle Scholar
  237. 237.
    237. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146, 35–37 (1995).PubMedCrossRefGoogle Scholar
  238. 238.
    238. S. Kaul and T. P. Krishnakantha, Influence of retinol deficiency and curcumin/turmeric feeding on tissue microsomal membrane lipid peroxidation and fatty acids in rats. Mol Cell Biochem 175, 43–48 (1997).PubMedCrossRefGoogle Scholar
  239. 239.
    239. A. Nogaki, K. Satoh, K. Iwasaka, H. Takano, M. Takahama, Y. Ida, and H. Sakagami, Radical intensity and cytotoxic activity of curcumin and gallic acid. Anticancer Res 18, 3487–3491 (1998).PubMedGoogle Scholar
  240. 240.
    240. S. Bhaumik, M. D. Jyothi, and A. Khar, Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett 483, 78–82 (2000).PubMedCrossRefGoogle Scholar
  241. 241.
    241. S. Kapoor and K. I. Priyadarsini, Protection of radiation-induced protein damage by curcumin. Biophys Chem 92, 119–126 (2001).PubMedCrossRefGoogle Scholar
  242. 242.
    242. M. R. Kelly, J. Xu, K. E. Alexander, and G. Loo, Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat Res 485, 309–318 (2001).PubMedGoogle Scholar
  243. 243.
    243. T. Masuda, T. Maekawa, K. Hidaka, H. Bando, Y. Takeda, and H. Yamaguchi, Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J Agric Food Chem 49, 2539–2547 (2001).PubMedCrossRefGoogle Scholar
  244. 244.
    244. K. C. Das and C. K. Das, Curcumin (diferuloylmethane), a singlet oxygen ((1)O(2)) quencher. Biochem Biophys Res Commun 295, 62–66 (2002).PubMedCrossRefGoogle Scholar
  245. 245.
    245. G. K. Jayaprakasha, B. S. Jena, P. S. Negi, and K. K. Sakariah, Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Z Naturforsch [C] 57, 828–835 (2002).Google Scholar
  246. 246.
    246. R. Toniolo, F. Di Narda, S. Susmel, M. Martelli, L. Martelli, and G. Bontempelli, Quenching of superoxide ions by curcumin. A mechanistic study in acetonitrile. Ann Chim 92, 281–288 (2002).PubMedGoogle Scholar
  247. 247.
    247. M. Balasubramanyam, A. A. Koteswari, R. S. Kumar, S. F. Monickaraj, J. U. Maheswari, and V. Mohan, Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci 28, 715–721 (2003).PubMedGoogle Scholar
  248. 248.
    248. A. Betancor-Fernandez, A. Perez-Galvez, H. Sies, and W. Stahl, Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity. J Pharm Pharmacol 55, 981–986 (2003).PubMedCrossRefGoogle Scholar
  249. 249.
    249. S. M. Chauhan, A. S. Kandadai, N. Jain, and A. Kumar, Biomimetic oxidation of curcumin with hydrogen peroxide catalyzed by 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides in dichloromethane. Chem Pharm Bull (Tokyo) 51, 1345–1347 (2003).CrossRefGoogle Scholar
  250. 250.
    250. M. Iqbal, Y. Okazaki and S. Okada, In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen 1(Suppl), 151–160 (2003).PubMedCrossRefGoogle Scholar
  251. 251.
    251. B. D. Johnston and E. G. DeMaster, Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide. Nitric Oxide 8, 231–234 (2003).PubMedCrossRefGoogle Scholar
  252. 252.
    252. R. Rukkumani, M. Sri Balasubashini, and V. P. Menon, Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. Phytother Res 17, 925–929 (2003).PubMedCrossRefGoogle Scholar
  253. 253.
    253. V. Eybl, D. Kotyzova, and M. Bludovska, The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicol Lett 151, 79–85 (2004).PubMedCrossRefGoogle Scholar
  254. 254.
    254. S. Fujisawa, T. Atsumi, M. Ishihara, and Y. Kadoma, Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 24, 563–569 (2004).PubMedGoogle Scholar
  255. 255.
    255. M. O. Iwunze and D. McEwan, Peroxynitrite interaction with curcumin solubilized in ethanolic solution. Cell Mol Biol (Noisy-le-grand) 50, 749–752 (2004).Google Scholar
  256. 256.
    256. C. Kalpana and V. P. Menon, Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol 56, 581–586 (2004).PubMedGoogle Scholar
  257. 257.
    257. R. K. Kempaiah and K. Srinivasan, Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab 48, 314–320 (2004).PubMedCrossRefGoogle Scholar
  258. 258.
    258. B. Mishra, K. I. Priyadarsini, M. K. Bhide, R. M. Kadam, and H. Mohan, Reactions of superoxide radicals with curcumin: Probable mechanisms by optical spectroscopy and EPR. Free Radical Res 38, 355–362 (2004).CrossRefGoogle Scholar
  259. 259.
    259. R. Barreto, S. Kawakita, J. Tsuchiya, E. Minelli, K. Pavasuthipaisit, A. Helmy, and F. Marotta, Metal-induced oxidative damage in cultured hepatocytes and hepatic lysosomal fraction: beneficial effect of a curcumin/absinthium compound. Chin J Dig Dis 6, 31–36,(2005).PubMedCrossRefGoogle Scholar
  260. 260.
    260. J. Chen, D. Wanming, D. Zhang, Q. Liu, and J. Kang, Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells. Pharmazie 60, 57–61 (2005).PubMedGoogle Scholar
  261. 261.
    261. S. Durgaprasad, C. G. Pai, Vasanthkumar, J. F. Alvres, and S. Namitha, A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res 122, 315–318 (2005).PubMedGoogle Scholar
  262. 262.
    262. V. Eybl, D. Kotyzova, L. Leseticky, M. Bludovska, and J. Koutensky, The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice. J Appl Toxicol 26(3), 207–212 (2005).CrossRefGoogle Scholar
  263. 263.
    263. W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, and D. L. Vander Jagt, Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13, 3811–3820 (2005).PubMedCrossRefGoogle Scholar
  264. 264.
    264. M. Sreepriya and G. Bali, Effects of administration of Embelin and Curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/Phenobarbital-induced hepatocarcinogenesis in Wistar rats. Mol Cell Biochem, 1–7 (2006).Google Scholar
  265. 265.
    265. Q. Y. Wei, W. F. Chen, B. Zhou, L. Yang, and Z. L. Liu, Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 1760, 70–77 (2006).PubMedGoogle Scholar
  266. 266.
    266. A. R. Shahed, E. Jones, and D. Shoskes, Quercetin and curcumin up-regulate antioxidant gene expression in rat kidney after ureteral obstruction or ischemia/reperfusion injury. Transplant Proc 33, 2988 (2001).PubMedCrossRefGoogle Scholar
  267. 267.
    267. F. Bonte, M. S. Noel-Hudson, J. Wepierre and A. Meybeck, Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress. Planta Med 63, 265–266 (1997).PubMedCrossRefGoogle Scholar
  268. 268.
    268. S. Watanabe and T. Fukui, Suppressive effect of curcumin on trichloroethylene-induced oxidative stress. J Nutr Sci Vitaminol (Tokyo) 46, 230–234 (2000).Google Scholar
  269. 269.
    269. J. L. Quiles, M. D. Mesa, C. L. Ramirez-Tortosa, C. M. Aguilera, M. Battino, A. Gil and M. C. Ramirez-Tortosa, Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22, 1225–1231 (2002).PubMedCrossRefGoogle Scholar
  270. 270.
    270. W. H. Chan, C. C. Wu, and J. S. Yu, Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 90, 327–338 (2003).PubMedCrossRefGoogle Scholar
  271. 271.
    271. P. Mahakunakorn, M. Tohda, Y. Murakami, K. Matsumoto, H. Watanabe, and O. Vajaragupta, Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull 26, 725–728 (2003).PubMedCrossRefGoogle Scholar
  272. 272.
    272. R. Rukkumani, K. Aruna, P. S. Varma, K. N. Rajasekaran, and V. P. Menon, Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. J Pharm Pharm Sci 7, 274–283 (2004).PubMedGoogle Scholar
  273. 273.
    273. R. Banjerdpongchai and P. Wilairat, Effects of water-soluble antioxidants and MAPKK/MEK inhibitor on curcumin-induced apoptosis in HL-60 human leukemic cells. Asian Pac J Cancer Prev 6, 282–285 (2005).PubMedGoogle Scholar
  274. 274.
    274. Y. D. Hsuuw, C. K. Chang, W. H. Chan, and J. S. Yu, Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol 205, 379–386 (2005).PubMedCrossRefGoogle Scholar
  275. 275.
    275. T. Mahesh, M. S. Balasubashini, and V. P. Menon, Effect of photo-irradiated curcumin treatment against oxidative stress in streptozotocin-induced diabetic rats. J Med Food 8, 251–255 (2005).PubMedCrossRefGoogle Scholar
  276. 276.
    276. K. U. Schallreuter and H. Rokos, Turmeric (curcumin): A widely used curry ingredient, can contribute to oxidative stress in Asian patients with acute vitiligo. Indian J Dermatol Venereol Leprol 72, 57–59 (2006).PubMedGoogle Scholar
  277. 277.
    277. I. Chattopadhyay, U. Bandyopadhyay, K. Biswas, P. Maity, and R. K. Banerjee, Indomethacin inactivates gastric peroxidase to induce reactive-oxygen-mediated gastric mucosal injury and curcumin protects it by preventing peroxidase inactivation and scavenging reactive oxygen. Free Radical Biol Med 40, 1397–1408 (2006).CrossRefGoogle Scholar
  278. 278.
    278. K. Cleary and R. F. McFeeters, Effects of oxygen and turmeric on the formation of oxidative aldehydes in fresh-pack dill pickles. J Agric Food Chem 54, 3421–3427 (2006).PubMedCrossRefGoogle Scholar
  279. 279.
    279. G. Scapagnini, C. Colombrita, M. Amadio, V. D'Agata, E. Arcelli, M. Sapienza, A. Quattrone, and V. Calabrese, Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8, 395–403 (2006).PubMedCrossRefGoogle Scholar
  280. 280.
    280. M. Yoshino, M. Haneda, M. Naruse, H. H. Htay, R. Tsubouchi, S. L. Qiao, W. H. Li, K. Murakami, and T. Yokochi, Prooxidant activity of curcumin: Copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicol In Vitro 18, 783–789 (2004).PubMedCrossRefGoogle Scholar
  281. 281.
    281. T. Atsumi, S. Fujisawa, and K. Tonosaki, Relationship between intracellular ROS production and membrane mobility in curcumin- and tetrahydrocurcumin-treated human gingival fibroblasts and human submandibular gland carcinoma cells. Oral Dis 11, 236–242 (2005).PubMedCrossRefGoogle Scholar
  282. 282.
    282. S. Fujisawa and Y. Kadoma, Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method. In Vivo 20, 39–44 (2006).PubMedGoogle Scholar
  283. 283.
    283. S. Bhaumik, R. Anjum, N. Rangaraj, B. V. Pardhasaradhi, and A. Khar, Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456, 311–314 (1999).PubMedCrossRefGoogle Scholar
  284. 284.
    284. J. Fang, J. Lu, and A. Holmgren, Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J Biol Chem 280, 25,284–25,290 (2005).Google Scholar
  285. 285.
    285. E. C. Herrmann and E. C. Moore, Purification of thioredoxin from rat Novikoff ascites hepatoma. J Biol Chem 248, 1219–1223 (1973).PubMedGoogle Scholar
  286. 286.
    286. E. C. Moore, A thioredoxin–thioredoxin reductase system from rat tumor. Biochem Biophys Res Commun 29, 264–8, (1967).PubMedCrossRefGoogle Scholar
  287. 287.
    287. K. U. Schallreuter and J. M. Wood, The activity and purification of membrane–associated thioredoxin reductase from human metastatic melanotic melanoma. Biochim Biophys Acta 967, 103–109 (1988).PubMedGoogle Scholar
  288. 288.
    288. J. L. Quiles, C. Aguilera, M. D. Mesa, M. C. Ramirez-Tortosa, L. Baro, and A. Gil, An ethanolic-aqueous extract of Curcuma longa decreases the susceptibility of liver microsomes and mitochondria to lipid peroxidation in atherosclerotic rabbits. Biofactors 8, 51–57 (1998).PubMedGoogle Scholar
  289. 289.
    289. L. M. Antunes, J. D. Darin, and L. Bianchi Nde, Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 43, 145–150 (2001).PubMedCrossRefGoogle Scholar
  290. 290.
    290. A. Singh, S. P. Singh, and R. Bamezai, Postnatal modulation of hepatic biotransformation system enzymes via translactational exposure of F1 mouse pups to turmeric and curcumin. Cancer Lett 96, 87–93 (1995).PubMedCrossRefGoogle Scholar
  291. 291.
    291. S. Oetari, M. Sudibyo, J. N. Commandeur, R. Samhoedi, and N. P. Vermeulen, Effects of curcumin on cytochrome P450 and glutathione S–transferase activities in rat liver. Biochem Pharmacol 51, 39–45 (1996).PubMedCrossRefGoogle Scholar
  292. 292.
    292. A. Singh, S. P. Singh, and R. Bamezai, Effect of arecoline on the curcumin-modulated hepatic biotransformation system enzymes in lactating mice and translactationally exposed F1 pups. Nutr Cancer 25, 101–110 (1996).PubMedGoogle Scholar
  293. 293.
    293. M. L. van Iersel, J. P. Ploemen, M. Lo Bello, G. Federici, and P. J. van Bladeren, Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1-1. Chem Biol Interact 108, 67–78 (1997).PubMedCrossRefGoogle Scholar
  294. 294.
    294. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92, 33–38 (2003).PubMedCrossRefGoogle Scholar
  295. 295.
    295. Y. Jiao, J. t. Wilkinson, E. Christine Pietsch, J. L. Buss, W. Wang, R. Planalp, F. M. Torti, and S. V. Torti, Iron chelation in the biological activity of curcumin. Free Radical Biol Med 40, 1152–1160 (2006).CrossRefGoogle Scholar
  296. 296.
    296. A. C. Bharti, N. Donato, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171, 3863–3871 (2003).PubMedGoogle Scholar
  297. 297.
    297. R. K. Giri, V. Rajagopal, and V. K. Kalra, Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91, 1199–1210 (2004).PubMedCrossRefGoogle Scholar
  298. 298.
    298. D. Ranjan, C. Chen, T. D. Johnston, H. Jeon, and M. Nagabhushan, Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 121, 171–177 (2004).PubMedCrossRefGoogle Scholar
  299. 299.
    299. J. L. Arbiser, N. Klauber, R. Rohan, R. van Leeuwen, M. T. Huang, C. Fisher, E. Flynn, and H. R. Byers, Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4, 376–383 (1998).PubMedGoogle Scholar
  300. 300.
    300. D. Thaloor, A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, and R. K. Maheshwari, Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ 9, 305–312 (1998).PubMedGoogle Scholar
  301. 301.
    301. J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. J. Park, B. S. Shim, S. H. Choi, and H. J. Kwon, Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 10, 695–704 (2003).PubMedCrossRefGoogle Scholar
  302. 302.
    302. P. Yoysungnoen, P. Wirachwong, P. Bhattarakosol, H. Niimi, and S. Patumraj, Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin Hemorheol Microcirc 33, 127–135 (2005).PubMedGoogle Scholar
  303. 303.
    303. P. Yoysungnoen, P. Wirachwong, P. Bhattarakosol, H. Niimi, and S. Patumraj, Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34, 109–115 (2006).PubMedGoogle Scholar
  304. 304.
    304. A. Barik, K. I. Priyadarsini, and H. Mohan, Photophysical studies on binding of curcumin to bovine serum albumins. Photochem Photobiol 77, 597–603 (2003).PubMedCrossRefGoogle Scholar
  305. 305.
    305. F. Zsila, Z. Bikadi, and M. Simonyi, Unique, pH-dependent biphasic band shape of the visible circular dichroism of curcumin-serum albumin complex. Biochem Biophys Res Commun 301, 776–782 (2003).PubMedCrossRefGoogle Scholar
  306. 306.
    306. A. Barik, B. Mishra, L. Shen, H. Mohan, R. M. Kadam, S. Dutta, H. Y. Zhang, and K. I. Priyadarsini, Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radical Biol Med 39, 811–822 (2005).CrossRefGoogle Scholar
  307. 307.
    307. E. Skrzypczak-Jankun, K. Zhou, N. P. McCabe, S. H. Selman, and J. Jankun, Structure of curcumin in complex with lipoxygenase and its significance in cancer. Int J Mol Med 12, 17–24 (2003).PubMedGoogle Scholar
  308. 308.
    308. R. S. Ramsewak, D. L. DeWitt, and M. G. Nair, Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 7, 303–308 (2000).PubMedGoogle Scholar
  309. 309.
    309. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053–1062 (2003).PubMedCrossRefGoogle Scholar
  310. 310.
    310. N. Romiti, R. Tongiani, F. Cervelli, and E. Chieli, Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci 62, 2349–2358 (1998).PubMedCrossRefGoogle Scholar
  311. 311.
    311. S. Anuchapreeda, P. Leechanachai, M. M. Smith, S. V. Ambudkar, and P. N. Limtrakul, Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64, 573–582 (2002).PubMedCrossRefGoogle Scholar
  312. 312.
    312. R. D. Snyder and M. R. Arnone, Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat Res 503, 21–35 (2002).PubMedGoogle Scholar
  313. 313.
    313. J. L. Dyer, S. Z. Khan, J. G. Bilmen, S. R. Hawtin, M. Wheatley, M. U. Javed, and F. Michelangeli, Curcumin: a new cell-permeant inhibitor of the inositol 1,4,5-trisphosphate receptor. Cell Calcium 31, 45–52 (2002).PubMedCrossRefGoogle Scholar
  314. 314.
    314. R. R. Satoskar, S. J. Shah, and S. G. Shenoy, Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 24, 651–654 (1986).PubMedGoogle Scholar
  315. 315.
    315. G. J. Kelloff, C. W. Boone, J. A. Crowell, V. E. Steele, R. Lubet, and C. C. Sigman, Chemopreventive drug development: perspectives and progress. Cancer Epidemiol Biomarkers Prev 3, 85–98 (1994).PubMedGoogle Scholar
  316. 316.
    316. J. S. James, Curcumin: Clinical trial finds no antiviral effect. AIDS Treat News (no. 242), 1–2 (1996).Google Scholar
  317. 317.
    317. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. Srinivas, Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64, 353–356,(1998).PubMedCrossRefGoogle Scholar
  318. 318.
    318. B. Lal, A. K. Kapoor, O. P. Asthana, P. K. Agrawal, R. Prasad, P. Kumar, and R. C. Srimal, Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res 13, 318–322 (1999).PubMedCrossRefGoogle Scholar
  319. 319.
    319. A. Rasyid and A. Lelo, The effect of curcumin and placebo on human gall-bladder function: an ultrasound study. Aliment Pharmacol Ther 13, 245–249,(1999).PubMedCrossRefGoogle Scholar
  320. 320.
    320. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng, Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143, 937–049 (2000).PubMedCrossRefGoogle Scholar
  321. 321.
    321. R. Lodha and A. Bagga, Traditional Indian systems of medicine. Ann Acad Med Singapore 29, 37–41 (2000).PubMedGoogle Scholar
  322. 322.
    322. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 2895–2900 (2001).PubMedGoogle Scholar
  323. 323.
    323. S. M. Plummer, K. A. Hill, M. F. Festing, W. P. Steward, A. J. Gescher, and R. A. Sharma, Clinical development of leukocyte cyclooxygenase 2 activity as a systemic biomarker for cancer chemopreventive agents. Cancer Epidemiol Biomarkers Prev 10, 1295–1299 (2001).PubMedGoogle Scholar
  324. 324.
    324. R. A. Sharma, H. R. McLelland, K. A. Hill, C. R. Ireson, S. A. Euden, M. M. Manson, M. Pirmohamed, L. J. Marnett, A. J. Gescher, and W. P. Steward, Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7, 1894–1900 (2001).PubMedGoogle Scholar
  325. 325.
    325. A. Rasyid, A. R. Rahman, K. Jaalam, and A. Lelo, Effect of different curcumin dosages on human gall bladder. Asia Pacific J Clin Nutr 11, 314–318 (2002).CrossRefGoogle Scholar
  326. 326.
    326. M. Bayes, X. Rabasseda, and J. R. Prous, Gateways to clinical trials. Methods Find Exp Clin Pharmacol 26, 723–753 (2004).PubMedGoogle Scholar
  327. 327.
    327. G. M. Cole, T. Morihara, G. P. Lim, F. Yang, A. Begum, and S. A. Frautschy, NSAID and antioxidant prevention of Alzheimer's disease: Lessons from in vitro and animal models. Ann N Y Acad Sci 1035, 68–84 (2004).PubMedCrossRefGoogle Scholar
  328. 328.
    328. G. Garcea, D. J. Jones, R. Singh, A. R. Dennison, P. B. Farmer, R. A. Sharma, W. P. Steward, A. J. Gescher, and D. P. Berry, Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90, 1011–1015 (2004).PubMedCrossRefGoogle Scholar
  329. 329.
    329. R. A. Sharma, S. A. Euden, S. L. Platton, D. N. Cooke, A. Shafayat, H. R. Hewitt, T. H. Marczylo, B. Morgan, D. Hemingway, S. M. Plummer, M. Pirmohamed, A. J. Gescher, and W. P. Steward, Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10, 6847–6854 (2004).PubMedCrossRefGoogle Scholar
  330. 330.
    330. M. Bayes, X. Rabasseda, and J. R. Prous, Gateways to clinical trials. Methods Find Exp Clin Pharmacol 27, 711–738 (2005).PubMedGoogle Scholar
  331. 331.
    331. G. Garcea, D. P. Berry, D. J. Jones, R. Singh, A. R. Dennison, P. B. Farmer, R. A. Sharma, W. P. Steward, and A. J. Gescher, Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14, 120–125 (2005).PubMedGoogle Scholar
  332. 332.
    332. P. R. Holt, S. Katz, and R. Kirshoff, Curcumin therapy in inflammatory bowel disease: A pilot study. Dig Dis Sci 50, 2191–2193 (2005).PubMedCrossRefGoogle Scholar
  333. 333.
    333. D. Shoskes, C. Lapierre, M. Cruz-Corerra, N. Muruve, R. Rosario, B. Fromkin, M. Braun, and J. Copley, Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: A randomized placebo controlled trial. Transplantation 80, 1556–1559 (2005).PubMedCrossRefGoogle Scholar
  334. 334.
    334. C. D. Lao, M. T. t. Ruffin, D. Normolle, D. D. Heath, S. I. Murray, J. M. Bailey, M. E. Boggs, J. Crowell, C. L. Rock, and D. E. Brenner, Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6, 10 (2006).PubMedCrossRefGoogle Scholar
  335. 335.
    335. M. Cruz-Correa, D. A. Shoskes, P. Sanchez, R. Zhao, L. M. Hylind, S. D. Wexner, and F. M. Giardiello, Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 4, 1035–1038 (2006).PubMedCrossRefGoogle Scholar
  336. 336.
    336. I. Gukovsky, C. N. Reyes, E. C. Vaquero, A. S. Gukovskaya, and S. J. Pandol, Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 284, G85–G9, (2003).PubMedGoogle Scholar
  337. 337.
    337. A. Gulcubuk, K. Sonmez, A. Gurel, K. Altunatmaz, N. Gurler, S. Aydin, L. Oksuz, H. Uzun, and O. Guzel, Pathologic alterations detected in acute pancreatitis induced by sodium taurocholate in rats and therapeutic effects of curcumin, ciprofloxacin and metronidazole combination. Pancreatology 5, 345–353 (2005).PubMedCrossRefGoogle Scholar
  338. 338.
    338. B. Joe, U. J. Rao, and B. R. Lokesh, Presence of an acidic glycoprotein in the serum of arthritic rats: modulation by capsaicin and curcumin. Mol Cell Biochem 169, 125–134 (1997).PubMedCrossRefGoogle Scholar
  339. 339.
    339. A. Liacini, J. Sylvester, W. Q. Li, and M. Zafarullah, Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21, 251–262 (2002).PubMedCrossRefGoogle Scholar
  340. 340.
    340. A. Liacini, J. Sylvester, W. Q. Li, W. Huang, F. Dehnade, M. Ahmad, and M. Zafarullah, Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res 288, 208–217 (2003).PubMedCrossRefGoogle Scholar
  341. 341.
    341. J. Sylvester, A. Liacini, W. Q. Li, and M. Zafarullah, Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 16, 469–476 (2004).PubMedCrossRefGoogle Scholar
  342. 342.
    342. K. Sugimoto, H. Hanai, K. Tozawa, T. Aoshi, M. Uchijima, T. Nagata, and Y. Koide, Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 123, 1912–1922 (2002).PubMedCrossRefGoogle Scholar
  343. 343.
    343. B. Salh, K. Assi, V. Templeman, K. Parhar, D. Owen, A. Gomez-Munoz, and K. Jacobson, Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol 285, G235–G243 (2003).PubMedGoogle Scholar
  344. 344.
    344. Y. Jiang, Z. S. Li, F. S. Jiang, X. Deng, C. S. Yao, and G. Nie, Effects of different ingredients of zedoary on gene expression of HSC-T6 cells. World J Gastroenterol 11, 6780–6786 (2005).PubMedGoogle Scholar
  345. 345.
    345. D. C. Kim, S. H. Kim, B. H. Choi, N. I. Baek, D. Kim, M. J. Kim, and K. T. Kim, Curcuma longa extract protects against gastric ulcers by blocking H2 histamine receptors. Biol Pharm Bull 28, 2220–2224 (2005).PubMedCrossRefGoogle Scholar
  346. 346.
    346. S. Swarnakar, K. Ganguly, P. Kundu, A. Banerjee, P. Maity, and A. V. Sharma, Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280, 9409–9415 (2005).PubMedCrossRefGoogle Scholar
  347. 347.
    347. O. S. Baek, O. H. Kang, Y. A. Choi, S. C. Choi, T. H. Kim, Y. H. Nah, D. Y. Kwon, Y. K. Kim, Y. H. Kim, K. H. Bae, J. P. Lim, and Y. M. Lee, Curcumin inhibits protease-activated receptor-2 and -4-mediated mast cell activation. Clin Chim Acta 338, 135–141 (2003).PubMedCrossRefGoogle Scholar
  348. 348.
    348. A. Ram, M. Das, and B. Ghosh, Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biol Pharm Bull 26, 1021–1024 (2003).PubMedCrossRefGoogle Scholar
  349. 349.
    349. J. J. Lee, W. T. Huang, D. Z. Shao, J. F. Liao, and M. T. Lin, Blocking NF-kappaB activation may be an effective strategy in the fever therapy. Jpn J Physiol 53, 367–375 (2003).PubMedCrossRefGoogle Scholar
  350. 350.
    350. D. Z. Shao, J. J. Lee, W. T. Huang, J. F. Liao, and M. T. Lin, Inhibition of nuclear factor-kappa B prevents staphylococcal enterotoxin A-induced fever. Mol Cell Biochem 262, 177–185 (2004).PubMedCrossRefGoogle Scholar
  351. 351.
    351. E. Tourkina, P. Gooz, J. C. Oates, A. Ludwicka-Bradley, R. M. Silver, and S. Hoffman, Curcumin-induced apoptosis in scleroderma lung fibroblasts: role of protein kinase cepsilon. Am J Respir Cell Mol Biol 31, 28–35 (2004).PubMedCrossRefGoogle Scholar
  352. 352.
    352. B. Bosman, Testing of lipoxygenase inhibitors, cyclooxygenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis. Skin Pharmacol 7, 324–334 (1994).PubMedGoogle Scholar
  353. 353.
    353. R. Verbeek, E. A. van Tol, and J. M. van Noort, Oral flavonoids delay recovery from experimental autoimmune encephalomyelitis in SJL mice. Biochem Pharmacol 70, 220–228 (2005).PubMedCrossRefGoogle Scholar
  354. 354.
    354. P. S. Babu and K. Srinivasan, Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol Cell Biochem 152, 13–21 (1995).PubMedGoogle Scholar
  355. 355.
    355. P. S. Babu and K. Srinivasan, Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem 166, 169–175 (1997).PubMedCrossRefGoogle Scholar
  356. 356.
    356. G. B. Sajithlal, P. Chithra, and G. Chandrakasan, Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem Pharmacol 56, 1607–1614 (1998).PubMedCrossRefGoogle Scholar
  357. 357.
    357. N. Arun and N. Nalini, Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr 57, 41–52 (2002).PubMedCrossRefGoogle Scholar
  358. 358.
    358. R. K. Kempaiah and K. Srinivasan, Antioxidant status of red blood cells and liver in hypercholesterolemic rats fed hypolipidemic spices. Int J Vitam Nutr Res 74, 199–208 (2004).PubMedCrossRefGoogle Scholar
  359. 359.
    359. T. Mahesh, M. M. Sri Balasubashini, and V. P. Menon, Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: effect on lipid peroxidation. Therapie 59, 639–644 (2004).PubMedCrossRefGoogle Scholar
  360. 360.
    360. M. Kuroda, Y. Mimaki, T. Nishiyama, T. Mae, H. Kishida, M. Tsukagawa, K. Takahashi, T. Kawada, K. Nakagawa, and M. Kitahara, Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 28, 937–939 (2005).PubMedCrossRefGoogle Scholar
  361. 361.
    361. J. B. Majithiya and R. Balaraman, Time-dependent changes in antioxidant enzymes and vascular reactivity of aorta in streptozotocin-induced diabetic rats treated with curcumin. J Cardiovasc Pharmacol 46, 697–705 (2005).PubMedCrossRefGoogle Scholar
  362. 362.
    362. T. Osawa and Y. Kato, Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann NY Acad Sci 1043, 440–451 (2005).PubMedCrossRefGoogle Scholar
  363. 363.
    363. B. B. Aggarwal, Y. Takada, and O. V. Oommen, From chemoprevention to chemotherapy: Common targets and common goals. Expert Opin Invest Drugs 13, 1327–1338 (2004).CrossRefGoogle Scholar
  364. 364.
    364. J. L. Abbruzzese and S. M. Lippman, The convergence of cancer prevention and therapy in early-phase clinical drug development. Cancer Cell 6, 321–326 (2004).PubMedCrossRefGoogle Scholar
  365. 365.
    365. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21, 1835–1841 (2000).PubMedCrossRefGoogle Scholar
  366. 366.
    366. S. E. Chuang, M. L. Kuo, C. H. Hsu, C. R. Chen, J. K. Lin, G. M. Lai, C. Y. Hsieh, and A. L. Cheng, Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 21, 331–335 (2000).PubMedCrossRefGoogle Scholar
  367. 367.
    367. S. E. Chuang, A. L. Cheng, J. K. Lin, and M. L. Kuo, Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 38, 991–995 (2000).PubMedCrossRefGoogle Scholar
  368. 368.
    368. C. C. Chua, R. C. Hamdy, and B. H. Chua, Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 1497, 69–76 (2000).PubMedCrossRefGoogle Scholar
  369. 369.
    369. Y. Shukla and A. Arora, Suppression of altered hepatic foci development by curcumin in wistar rats. Nutr Cancer 45, 53–59 (2003).PubMedCrossRefGoogle Scholar
  370. 370.
    370. M. Sreepriya and G. Bali, Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia 76, 549–555 (2005).PubMedCrossRefGoogle Scholar
  371. 371.
    371. M. C. Jiang, H. F. Yang-Yen, J. K. Lin, and J. J. Yen, Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13, 609–616 (1996).PubMedGoogle Scholar
  372. 372.
    372. K. Imaida, S. Tamano, K. Kato, Y. Ikeda, M. Asamoto, S. Takahashi, Z. Nir, M. Murakoshi, H. Nishino, and T. Shirai, Lack of chemopreventive effects of lycopene and curcumin on experimental rat prostate carcinogenesis. Carcinogenesis 22, 467–472 (2001).PubMedCrossRefGoogle Scholar
  373. 373.
    373. M. L. Kuo, T. S. Huang, and J. K. Lin, Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1317, 95–100 (1996).PubMedGoogle Scholar
  374. 374.
    374. Y. Wu, Y. Chen, and W. Chen, Effects of concurrent use of rh-IFN-gamma and curcumin on the anti-proliferative capacity of HL-60 cells. J Tongji Med Univ 19, 267–270 (1999).PubMedCrossRefGoogle Scholar
  375. 375.
    375. A. Bielak-Zmijewska, M. Koronkiewicz, J. Skierski, K. Piwocka, E. Radziszewska, and E. Sikora, Effect of curcumin on the apoptosis of rodent and human nonproliferating and proliferating lymphoid cells. Nutr Cancer 38, 131–138 (2000).PubMedCrossRefGoogle Scholar
  376. 376.
    376. Y. Chen, Y. Wu, J. He, and W. Chen, The experimental and clinical study on the effect of curcumin on cell cycle proteins and regulating proteins of apoptosis in acute myelogenous leukemia. J Huazhong Univ Sci Technol Med Sci 22, 295–298 (2002).PubMedCrossRefGoogle Scholar
  377. 377.
    377. A. Duvoix, F. Morceau, M. Schnekenburger, S. Delhalle, M. M. Galteau, M. Dicato, and M. Diederich, Curcumin-induced cell death in two leukemia cell lines: K562 and Jurkat. Ann NY Acad Sci 1010, 389–392 (2003).PubMedCrossRefGoogle Scholar
  378. 378.
    378. L. X. Wu, J. H. Xu, G. H. Wu, and Y. Z. Chen, Inhibitory effect of curcumin on proliferation of K562 cells involves down-regulation of p210(bcr/abl) initiated Ras signal transduction pathway. Acta Pharmacol Sin 24, 1155–1160 (2003).PubMedGoogle Scholar
  379. 379.
    379. A. Bielak-Mijewska, K. Piwocka, A. Magalska, and E. Sikora, P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother Pharmacol 53, 179–185 (2004).PubMedCrossRefGoogle Scholar
  380. 380.
    380. E. Sikora, A. Bielak-Zmijewska, K. Piwocka, J. Skierski, and E. Radziszewska, Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol 54, 899–907 (1997).PubMedCrossRefGoogle Scholar
  381. 381.
    381. K. Piwocka, K. Zablocki, M. R. Wieckowski, J. Skierski, I. Feiga, J. Szopa, N. Drela, L. Wojtczak, and E. Sikora, A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp Cell Res 249, 299–307 (1999).PubMedCrossRefGoogle Scholar
  382. 382.
    382. E. Jaruga, S. Salvioli, J. Dobrucki, S. Chrul, J. Bandorowicz-Pikula, E. Sikora, C. Franceschi, A. Cossarizza, and G. Bartosz, Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Lett 433, 287–293 (1998).PubMedCrossRefGoogle Scholar
  383. 383.
    383. D. Ranjan, T. D. Johnston, K. S. Reddy, G. Wu, S. Bondada, and C. Chen, Enhanced apoptosis mediates inhibition of EBV-transformed lymphoblastoid cell line proliferation by curcumin. J Surg Res 87, 1–5 (1999).PubMedCrossRefGoogle Scholar
  384. 384.
    384. H. L. Liu, Y. Chen, G. H. Cui, and J. F. Zhou, Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin 26, 603–609 (2005).PubMedCrossRefGoogle Scholar
  385. 385.
    385. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206–217 (2005).PubMedCrossRefGoogle Scholar
  386. 386.
    386. C. Sun, X. Liu, Y. Chen, and F. Liu, Anticancer effect of curcumin on human B cell non-Hodgkin's lymphoma. J Huazhong Univ Sci Technolog Med Sci 25, 404–407 (2005).PubMedCrossRefGoogle Scholar
  387. 387.
    387. Y. Wu, Y. Chen, J. Xu, and L. Lu, Anticancer activities of curcumin on human Burkitt's lymphoma. Zhonghua Zhong Liu Za Zhi 24, 348–352 (2002).PubMedGoogle Scholar
  388. 388.
    388. A. C. Bharti, S. Shishodia, J. M. Reuben, D. Weber, R. Alexanian, S. Raj-Vadhan, Z. Estrov, M. Talpaz, and B. B. Aggarwal, Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103, 3175–3184 (2004).PubMedCrossRefGoogle Scholar
  389. 389.
    389. S. Uddin, A. R. Hussain, P. S. Manogaran, K. Al-Hussein, L. C. Platanias, M. I. Gutierrez, and K. G. Bhatia, Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene 24, 7022–7030 (2005).PubMedCrossRefGoogle Scholar
  390. 390.
    390. N. R. Jana, P. Dikshit, A. Goswami, and N. Nukina, Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279, 11,680–11,685 (2004).Google Scholar
  391. 391.
    391. A. Liontas and H. Yeger, Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24, 987–998 (2004).PubMedGoogle Scholar
  392. 392.
    392. M. H. Pan, W. L. Chang, S. Y. Lin-Shiau, C. T. Ho, and J. K. Lin, Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49, 1464–1474 (2001).PubMedCrossRefGoogle Scholar
  393. 393.
    393. S. Nagai, M. Kurimoto, K. Washiyama, Y. Hirashima, T. Kumanishi, and S. Endo, Inhibition of cellular proliferation and induction of apoptosis by curcumin in human malignant astrocytoma cell lines. J Neurooncol 74, 105–111 (2005).PubMedCrossRefGoogle Scholar
  394. 394.
    394. K. Mehta, P. Pantazis, T. McQueen, and B. B. Aggarwal, Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470–481 (1997).PubMedCrossRefGoogle Scholar
  395. 395.
    395. C. Ramachandran and W. You, Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res Treat 54, 269–278 (1999).PubMedCrossRefGoogle Scholar
  396. 396.
    396. T. Choudhuri, S. Pal, M. L. Agwarwal, T. Das, and G. Sa, Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512, 334–340 (2002).PubMedCrossRefGoogle Scholar
  397. 397.
    397. J. M. Holy, Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutat Res 518, 71–84 (2002).PubMedGoogle Scholar
  398. 398.
    398. Z. M. Shao, Z. Z. Shen, C. H. Liu, M. R. Sartippour, V. L. Go, D. Heber, and M. Nguyen, Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98, 234–240 (2002).PubMedCrossRefGoogle Scholar
  399. 399.
    399. C. Ramachandran, S. Rodriguez, R. Ramachandran, P. K. Raveendran Nair, H. Fonseca, Z. Khatib, E. Escalon, and S. J. Melnick, Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25, 3293–3302 (2005).PubMedGoogle Scholar
  400. 400.
    400. L. Moragoda, R. Jaszewski, and A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 21, 873–878 (2001).PubMedGoogle Scholar
  401. 401.
    401. S. Aggarwal, Y. Takada, S. Singh, J. N. Myers, and B. B. Aggarwal, Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 111, 679–692 (2004).PubMedCrossRefGoogle Scholar
  402. 402.
    402. G. Radhakrishna Pillai, A. S. Srivastava, T. I. Hassanein, D. P. Chauhan, and E. Carrier, Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208, 163–170 (2004).PubMedCrossRefGoogle Scholar
  403. 403.
    403. L. Li, B. B. Aggarwal, S. Shishodia, J. Abbruzzese, and R. Kurzrock, Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101, 2351–2362 (2004).PubMedCrossRefGoogle Scholar
  404. 404.
    404. M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, and G. Ouyang, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30, 221–226 (2006).PubMedCrossRefGoogle Scholar
  405. 405.
    405. R. Kuttan, P. C. Sudheeran, and C. D. Josph, Turmeric and curcumin as topical agents in cancer therapy. Tumori 73, 29–31 (1987).PubMedGoogle Scholar
  406. 406.
    406. M. A. Azuine and S. V. Bhide, Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice. Nutr Cancer 17, 77–83 (1992).PubMedGoogle Scholar
  407. 407.
    407. M. T. Huang, E. E. Deschner, H. L. Newmark, Z. Y. Wang, T. A. Ferraro, and A. H. Conney, Effect of dietary curcumin and ascorbyl palmitate on azoxymethanol-induced colonic epithelial cell proliferation and focal areas of dysplasia. Cancer Lett 64, 117–121 (1992).PubMedCrossRefGoogle Scholar
  408. 408.
    408. M. T. Huang, Z. Y. Wang, C. A. Georgiadis, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 13, 2183–2186 (1992).PubMedCrossRefGoogle Scholar
  409. 409.
    409. M. T. Huang, W. Ma, P. Yen, J. G. Xie, J. Han, K. Frenkel, D. Grunberger, and A. H. Conney, Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83–88 (1997).PubMedCrossRefGoogle Scholar
  410. 410.
    410. P. Limtrakul, S. Lipigorngoson, O. Namwong, A. Apisariyakul, and F. W. Dunn, Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett 116, 197–203 (1997).PubMedCrossRefGoogle Scholar
  411. 411.
    411. M. C. Jiang, H. F. Yang-Yen, J. J. Yen, and J. K. Lin, Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26, 111–120 (1996).PubMedGoogle Scholar
  412. 412.
    412. J. A. Bush, K. J. Cheung, Jr., and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271, 305–314 (2001).PubMedCrossRefGoogle Scholar
  413. 413.
    413. M. Zheng, S. Ekmekcioglu, E. T. Walch, C. H. Tang, and E. A. Grimm, Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14, 165–171 (2004).PubMedCrossRefGoogle Scholar
  414. 414.
    414. D. R. Siwak, S. Shishodia, B. B. Aggarwal, and R. Kurzrock, Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104, 879–890 (2005).PubMedCrossRefGoogle Scholar
  415. 415.
    415. W. H. Chan and H. J. Wu, Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem 92, 200–212 (2004).PubMedCrossRefGoogle Scholar
  416. 416.
    416. M. A. Azuine and S. V. Bhide, Adjuvant chemoprevention of experimental cancer: Catechin and dietary turmeric in forestomach and oral cancer models. J Ethnopharmacol 44, 211–217 (1994).PubMedCrossRefGoogle Scholar
  417. 417.
    417. T. Tanaka, H. Makita, M. Ohnishi, Y. Hirose, A. Wang, H. Mori, K. Satoh, A. Hara, and H. Ogawa, Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res 54, 4653–4659 (1994).PubMedGoogle Scholar
  418. 418.
    418. K. Krishnaswamy, V. K. Goud, B. Sesikeran, M. A. Mukundan, and T. P. Krishna, Retardation of experimental tumorigenesis and reduction in DNA adducts by turmeric and curcumin. Nutr Cancer 30, 163–166 (1998).PubMedGoogle Scholar
  419. 419.
    419. N. Li, X. Chen, J. Liao, G. Yang, S. Wang, Y. Josephson, C. Han, J. Chen, M. T. Huang, and C. S. Yang, Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23, 1307–1313 (2002).PubMedCrossRefGoogle Scholar
  420. 420.
    420. N. Li, X. Chen, C. Han, and J. Chen, [Chemopreventive effect of tea and curcumin on DMBA-induced oral carcinogenesis in hamsters]. Wei Sheng Yan Jiu 31, 354–357 (2002).PubMedGoogle Scholar
  421. 421.
    421. J. Ushida, S. Sugie, K. Kawabata, Q. V. Pham, T. Tanaka, K. Fujii, H. Takeuchi, Y. Ito, and H. Mori, Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn J Cancer Res 91, 893–898 (2000).PubMedGoogle Scholar
  422. 422.
    422. M. T. Huang, Y. R. Lou, W. Ma, H. L. Newmark, K. R. Reuhl, and A. H. Conney, Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res 54, 5841–5847 (1994).PubMedGoogle Scholar
  423. 423.
    423. S. V. Singh, X. Hu, S. K. Srivastava, M. Singh, H. Xia, J. L. Orchard, and H. A. Zaren, Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19, 1357–1360 (1998).PubMedCrossRefGoogle Scholar
  424. 424.
    424. S. Ikezaki, A. Nishikawa, F. Furukawa, K. Kudo, H. Nakamura, K. Tamura, and H. Mori, Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res 21, 3407–3411 (2001).PubMedGoogle Scholar
  425. 425.
    425. S. Perkins, R. D. Verschoyle, K. Hill, I. Parveen, M. D. Threadgill, R. A. Sharma, M. L. Williams, W. P. Steward, and A. J. Gescher, Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11, 535–540 (2002).PubMedGoogle Scholar
  426. 426.
    426. S. Perkins, A. R. Clarke, W. Steward, and A. Gescher, Age-related difference in susceptibility of Apc(Min/+) mice towards the chemopreventive efficacy of dietary aspirin and curcumin. Br J Cancer 88, 1480–1483 (2003).PubMedCrossRefGoogle Scholar
  427. 427.
    427. M. A. Pereira, C. J. Grubbs, L. H. Barnes, H. Li, G. R. Olson, I. Eto, M. Juliana, L. M. Whitaker, G. J. Kelloff, V. E. Steele, and R. A. Lubet, Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17, 1305–1311 (1996).PubMedCrossRefGoogle Scholar
  428. 428.
    428. M. J. Wargovich, C. D. Chen, A. Jimenez, V. E. Steele, M. Velasco, L. C. Stephens, R. Price, K. Gray, and G. J. Kelloff, Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomarkers Prev 5, 355–360 (1996).PubMedGoogle Scholar
  429. 429.
    429. H. S. Samaha, G. J. Kelloff, V. Steele, C. V. Rao, and B. S. Reddy, Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res 57, 1301–1305 (1997).PubMedGoogle Scholar
  430. 430.
    430. T. Kawamori, R. Lubet, V. E. Steele, G. J. Kelloff, R. B. Kaskey, C. V. Rao, and B. S. Reddy, Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59, 597–601 (1999).PubMedGoogle Scholar
  431. 431.
    431. C. V. Rao, T. Kawamori, R. Hamid, and B. S. Reddy, Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis 20, 641–644 (1999).PubMedCrossRefGoogle Scholar
  432. 432.
    432. Y. Kwon, M. Malik, and B. A. Magnuson, Inhibition of colonic aberrant crypt foci by curcumin in rats is affected by age. Nutr Cancer 48, 37–43 (2004).PubMedCrossRefGoogle Scholar
  433. 433.
    433. S. R. Volate, D. M. Davenport, S. J. Muga, and M. J. Wargovich, Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis 26, 1450–1456 (2005).PubMedCrossRefGoogle Scholar
  434. 434.
    434. J. M. Kim, S. Araki, D. J. Kim, C. B. Park, N. Takasuka, H. Baba-Toriyama, T. Ota, Z. Nir, F. Khachik, N. Shimidzu, Y. Tanaka, T. Osawa, T. Uraji, M. Murakoshi, H. Nishino, and H. Tsuda, Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis 19, 81–85 (1998).PubMedCrossRefGoogle Scholar
  435. 435.
    435. R. Hanif, L. Qiao, S. J. Shiff, and B. Rigas, Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130, 576–584 (1997).PubMedCrossRefGoogle Scholar
  436. 436.
    436. H. Chen, Z. S. Zhang, Y. L. Zhang, and D. Y. Zhou, Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675–3680 (1999).PubMedGoogle Scholar
  437. 437.
    437. R. Rashmi, T. R. Santhosh Kumar, and D. Karunagaran, Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett 538, 19–24 (2003).PubMedCrossRefGoogle Scholar
  438. 438.
    438. G. P. Collett and F. C. Campbell, Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25, 2183–2189 (2004).PubMedCrossRefGoogle Scholar
  439. 439.
    439. S. C. Wei, Y. S. Lin, P. N. Tsao, J. J. Wu-Tsai, C. H. Wu, and J. M. Wong, Comparison of the anti-proliferation and apoptosis-induction activities of sulindac, celecoxib, curcumin, and nifedipine in mismatch repair-deficient cell lines. J Formos Med Assoc 103, 599–606 (2004).PubMedGoogle Scholar
  440. 440.
    440. G. Song, Y. B. Mao, Q. F. Cai, L. M. Yao, G. L. Ouyang, and S. D. Bao, Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res 38, 1791–1798 (2005).PubMedCrossRefGoogle Scholar
  441. 441.
    441. K. Singletary, C. MacDonald, M. Wallig, and C. Fisher, Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin. Cancer Lett 103, 137–141 (1996).PubMedCrossRefGoogle Scholar
  442. 442.
    442. S. S. Deshpande, A. D. Ingle, and G. B. Maru, Chemopreventive efficacy of curcumin-free aqueous turmeric extract in 7,12-dimethylbenz[a]anthracene-induced rat mammary tumorigenesis. Cancer Lett 123, 35–40 (1998).PubMedCrossRefGoogle Scholar
  443. 443.
    443. K. Singletary, C. MacDonald, M. Iovinelli, C. Fisher, and M. Wallig, Effect of the beta-diketones diferuloylmethane (curcumin) and dibenzoylmethane on rat mammary DNA adducts and tumors induced by 7,12-dimethylbenz[a]anthracene. Carcinogenesis 19, 1039–1043 (1998).PubMedCrossRefGoogle Scholar
  444. 444.
    444. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20, 1011–1018 (1999).PubMedCrossRefGoogle Scholar
  445. 445.
    445. R. Kuttan, P. Bhanumathy, K. Nirmala and M. C. George, Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 29, 197–202, (1985).PubMedCrossRefGoogle Scholar
  446. 446.
    446. M. Nagabhushan and S. V. Bhide, Curcumin as an inhibitor of cancer. J Am Coll Nutr 11, 192–128 (1992).PubMedGoogle Scholar
  447. 447.
    447. S. S. Hecht, P. M. Kenney, M. Wang, N. Trushin, S. Agarwal, A. V. Rao, and P. Upadhyaya, Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. Cancer Lett 137, 123–130 (1999).PubMedCrossRefGoogle Scholar
  448. 448.
    448. A. Khar, A. M. Ali, B. V. Pardhasaradhi, Z. Begum, and R. Anjum, Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett 445, 165–168 (1999).PubMedCrossRefGoogle Scholar
  449. 449.
    449. M. Churchill, A. Chadburn, R. T. Bilinski, and M. M. Bertagnolli, Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J Surg Res 89, 169–175 (2000).PubMedCrossRefGoogle Scholar
  450. 450.
    450. B. Lal, A. K. Kapoor, P. K. Agrawal, O. P. Asthana, and R. C. Srimal, Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res 14, 443–447 (2000).PubMedCrossRefGoogle Scholar
  451. 451.
    451. S. Busquets, N. Carbo, V. Almendro, M. T. Quiles, F. J. Lopez-Soriano, and J. M. Argiles, Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model. Cancer Lett 167, 33–38 (2001).PubMedCrossRefGoogle Scholar
  452. 452.
    452. G. P. Collett, C. N. Robson, J. C. Mathers, and F. C. Campbell, Curcumin modifies Apc(min) apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apc(min) mice. Carcinogenesis 22, 821–825 (2001).PubMedCrossRefGoogle Scholar
  453. 453.
    453. P. Sindhwani, J. A. Hampton, M. M. Baig, R. Keck, and S. H. Selman, Curcumin prevents intravesical tumor implantation of the MBT-2 tumor cell line in C3H mice. J Urol 166, 1498–1501 (2001).PubMedCrossRefGoogle Scholar
  454. 454.
    454. H. Inano and M. Onoda, Radioprotective action of curcumin extracted from Curcuma longa LINN: Inhibitory effect on formation of urinary 8-hydroxy-2′-deoxyguanosine, tumorigenesis, but not mortality, induced by gamma-ray irradiation. Int J Radiat Oncol Biol Phys 53, 735–743 (2002).PubMedCrossRefGoogle Scholar
  455. 455.
    455. H. Inano and M. Onoda, Prevention of radiation-induced mammary tumors. Int J Radiat Oncol Biol Phys 52, 212–223 (2002).PubMedCrossRefGoogle Scholar
  456. 456.
    456. N. Ozen, E. Uslu, M. Ozen, S. Aydin, T. Altug, A. Belce, and E. Kokoglu, Curcumin's effects on sialic acid level and sialidase activity in Ehrlich ascites tumor bearing mice. Tohoku J Exp Med 197, 221–227 (2002).PubMedCrossRefGoogle Scholar
  457. 457.
    457. N. Frank, J. Knauft, F. Amelung, J. Nair, H. Wesch, and H. Bartsch, No prevention of liver and kidney tumors in Long-Evans Cinnamon rats by dietary curcumin, but inhibition at other sites and of metastases. Mutat Res 523–524, 127–135 (2003).PubMedGoogle Scholar
  458. 458.
    458. J. Gertsch, M. Guttinger, J. Heilmann, and O. Sticher, Curcumin differentially modulates mRNA profiles in Jurkat T and human peripheral blood mononuclear cells. Bioorg Med Chem 11, 1057–1063 (2003).PubMedCrossRefGoogle Scholar
  459. 459.
    459. J. Odot, P. Albert, A. Carlier, M. Tarpin, J. Devy, and C. Madoulet, In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111, 381–387 (2004).PubMedCrossRefGoogle Scholar
  460. 460.
    460. M. Belakavadi and B. P. Salimath, Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol Cell Biochem 273, 57–67 (2005).PubMedCrossRefGoogle Scholar
  461. 461.
    461. A. Pal and A. K. Pal, Radioprotection of turmeric extracts in bacterial system. Acta Biol Hung 56, 333–343 (2005).PubMedCrossRefGoogle Scholar
  462. 462.
    462. M. Notarbartolo, P. Poma, D. Perri, L. Dusonchet, M. Cervello, and N. D'Alessandro, Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224, 53–65 (2005).PubMedGoogle Scholar
  463. 463.
    463. A. K. Singh, G. S. Sidhu, T. Deepa, and R. K. Maheshwari, Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett 107, 109–115 (1996).PubMedCrossRefGoogle Scholar
  464. 464.
    464. R. G. Mehta and R. C. Moon, Characterization of effective chemopreventive agents in mammary gland in vitro using an initiation-promotion protocol. Anticancer Res 11, 593–596 (1991).PubMedGoogle Scholar
  465. 465.
    465. J. A. Sokoloski, K. Shyam, and A. C. Sartorelli, Induction of the differentiation of HL-60 promyelocytic leukemia cells by curcumin in combination with low levels of vitamin D3. Oncol Res 9, 31–39 (1997).PubMedGoogle Scholar
  466. 466.
    466. S. C. Gautam, Y. X. Xu, K. R. Pindolia, N. Janakiraman, and R. A. Chapman, Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane). Biochem Pharmacol 55, 1333–1337 (1998).PubMedCrossRefGoogle Scholar
  467. 467.
    467. E. Jaruga, A. Sokal, S. Chrul, and G. Bartosz, Apoptosis-independent alterations in membrane dynamics induced by curcumin. Exp Cell Res 245, 303–312 (1998).PubMedCrossRefGoogle Scholar
  468. 468.
    468. E. Jaruga, A. Bielak-Zmijewska, E. Sikora, J. Skierski, E. Radziszewska, K. Piwocka, and G. Bartosz, Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem Pharmacol 56, 961–965 (1998).PubMedCrossRefGoogle Scholar
  469. 469.
    469. S. H. Jee, S. C. Shen, C. R. Tseng, H. C. Chiu, and M. L. Kuo, Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells. J Invest Dermatol 111, 656–661 (1998).PubMedCrossRefGoogle Scholar
  470. 470.
    470. S. M. D'Ambrosio, R. Gibson-D'Ambrosio, G. E. Milo, B. Casto, G. J. Kelloff, and V. E. Steele, Differential response of normal, premalignant and malignant human oral epithelial cells to growth inhibition by chemopreventive agents. Anticancer Res 20, 2273–2280 (2000).PubMedGoogle Scholar
  471. 471.
    471. T. Dorai, N. Gehani, and A. Katz, Therapeutic potential of curcumin in human prostate cancer-I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer Prostatic Dis 3, 84–93 (2000).PubMedCrossRefGoogle Scholar
  472. 472.
    472. T. M. Elattar and A. S. Virji, The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res 20, 1733–1738 (2000).PubMedGoogle Scholar
  473. 473.
    473. Y. Wu, Y. Chen, and M. He, The influence of curcumin on the cell cycle of HL-60 cells and contrast study. J Tongji Med Univ 20, 123–125 (2000).PubMedCrossRefGoogle Scholar
  474. 474.
    474. B. K. Batth, R. Tripathi, and U. K. Srinivas, Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells. Differentiation 68, 133–140 (2001).PubMedCrossRefGoogle Scholar
  475. 475.
    475. B. Cipriani, G. Borsellino, H. Knowles, D. Tramonti, F. Cavaliere, G. Bernardi, L. Battistini, and C. F. Brosnan, Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation. J Immunol 167, 3454–3462 (2001).PubMedGoogle Scholar
  476. 476.
    476. T. Dorai, Y. C. Cao, B. Dorai, R. Buttyan, and A. E. Katz, Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47, 293–303 (2001).PubMedCrossRefGoogle Scholar
  477. 477.
    477. H. Mori, K. Niwa, Q. Zheng, Y. Yamada, K. Sakata, and N. Yoshimi, Cell proliferation in cancer prevention; effects of preventive agents on estrogen-related endometrial carcinogenesis model and on an in vitro model in human colorectal cells. Mutat Res 480–481, 201–207 (2001).PubMedGoogle Scholar
  478. 478.
    478. D. Morin, S. Barthelemy, R. Zini, S. Labidalle, and J. P. Tillement, Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495, 131–136 (2001).PubMedCrossRefGoogle Scholar
  479. 479.
    479. A. Mukhopadhyay, C. Bueso-Ramos, D. Chatterjee, P. Pantazis, and B. B. Aggarwal, Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20, 7597–7609 (2001).PubMedCrossRefGoogle Scholar
  480. 480.
    480. S. Pal, T. Choudhuri, S. Chattopadhyay, A. Bhattacharya, G. K. Datta, T. Das, and G. Sa, Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells. Biochem Biophys Res Commun 288, 658–665 (2001).PubMedCrossRefGoogle Scholar
  481. 481.
    481. K. Piwocka, E. Jaruga, J. Skierski, I. Gradzka, and E. Sikora, Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radical Biol Med 31, 670–678 (2001).CrossRefGoogle Scholar
  482. 482.
    482. R. J. Anto, A. Mukhopadhyay, K. Denning, and B. B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23, 143–150 (2002).PubMedCrossRefGoogle Scholar
  483. 483.
    483. M. J. Park, E. H. Kim, I. C. Park, H. C. Lee, S. H. Woo, J. Y. Lee, Y. J. Hong, C. H. Rhee, S. H. Choi, B. S. Shim, S. H. Lee, and S. I. Hong, Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol 21, 379–383 (2002).PubMedGoogle Scholar
  484. 484.
    484. K. Piwocka, A. Bielak-Mijewska and E. Sikora, Curcumin induces caspase-3-independent apoptosis in human multidrug-resistant cells. Ann NY Acad Sci 973, 250–254 (2002).PubMedGoogle Scholar
  485. 485.
    485. J. H. Bae, J. W. Park, and T. K. Kwon, Ruthenium red, inhibitor of mitochondrial Ca2 +uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2 + depletion and cytochrome c release. Biochem Biophys Res Commun 303, 1073–1079 (2003).PubMedCrossRefGoogle Scholar
  486. 486.
    486. D. Deeb, Y. X. Xu, H. Jiang, X. Gao, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2, 95–103 (2003).PubMedGoogle Scholar
  487. 487.
    487. A. Pol, M. Bergers, and J. Schalkwijk, Comparison of antiproliferative effects of experimental and established antipsoriatic drugs on human keratinocytes, using a simple 96-well-plate assay. In Vitro Cell Dev Biol Anim 39, 36–42 (2003).PubMedCrossRefGoogle Scholar
  488. 488.
    488. T. Dorai, J. P. Dutcher, D. W. Dempster, and P. H. Wiernik, Therapeutic potential of curcumin in prostate cancer–V: Interference with the osteomimetic properties of hormone refractory C4-2B prostate cancer cells. Prostate 60, 1–17 (2004).PubMedCrossRefGoogle Scholar
  489. 489.
    489. J. Holy, Curcumin inhibits cell motility and alters microfilament organization and function in prostate cancer cells. Cell Motil Cytoskeleton 58, 253–268 (2004).PubMedCrossRefGoogle Scholar
  490. 490.
    490. R. Rashmi, S. Kumar, and D. Karunagaran, Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. Carcinogenesis 25, 179–187 (2004).PubMedCrossRefGoogle Scholar
  491. 491.
    491. D. W. Scott and G. Loo, Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 25, 2155–2164 (2004).PubMedCrossRefGoogle Scholar
  492. 492.
    492. C. Syng-Ai, A. L. Kumari and A. Khar, Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3, 1101–1108 (2004).PubMedGoogle Scholar
  493. 493.
    493. M. Fullbeck, X. Huang, R. Dumdey, C. Frommel, W. Dubiel, and R. Preissner, Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer 5, 97 (2005).PubMedCrossRefGoogle Scholar
  494. 494.
    494. X. Gao, D. Deeb, H. Jiang, Y. B. Liu, S. A. Dulchavsky, and S. C. Gautam, Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J Exp Ther Oncol 5, 39–48 (2005).PubMedGoogle Scholar
  495. 495.
    495. E. M. Jung, J. H. Lim, T. J. Lee, J. W. Park, K. S. Choi, and T. K. Kwon, Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis 26, 1905–1913 (2005).PubMedCrossRefGoogle Scholar
  496. 496.
    496. S. Mishra, N. Kapoor, A. Mubarak Ali, B. V. Pardhasaradhi, A. L. Kumari, A. Khar, and K. Misra, Differential apoptotic and redox regulatory activities of curcumin and its derivatives. Free Radica Biol Med 38, 1353–1360 (2005).CrossRefGoogle Scholar
  497. 497.
    497. S. D. Park, J. H. Jung, H. W. Lee, Y. M. Kwon, K. H. Chung, M. G. Kim, and C. H. Kim, Zedoariae rhizoma and curcumin inhibits platelet-derived growth factor-induced proliferation of human hepatic myofibroblasts. Int Immunopharmacol 5, 555–569 (2005).PubMedCrossRefGoogle Scholar
  498. 498.
    498. R. Rashmi, S. Kumar, and D. Karunagaran, Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downregulation of Bcl-XL. Carcinogenesis 26, 713–723 (2005).PubMedCrossRefGoogle Scholar
  499. 499.
    499. Q. Wang, A. Y. Sun, A. Simonyi, M. D. Jensen, P. B. Shelat, G. E. Rottinghaus, R. S. MacDonald, D. K. Miller, D. E. Lubahn, G. A. Weisman, and G. Y. Sun, Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82, 138–148 (2005).PubMedCrossRefGoogle Scholar
  500. 500.
    500. C. W. Lee, W. N. Lin, C. C. Lin, S. F. Luo, J. S. Wang, J. Pouyssegur, and C. M. Yang, Transcriptional regulation of VCAM-1 expression by tumor necrosis factor-alpha in human tracheal smooth muscle cells: involvement of MAPKs, NF-kappaB, p300, and histone acetylation. J Cell Physiol 207, 174–186 (2006).PubMedCrossRefGoogle Scholar
  501. 501.
    501. L. I. Lin, Y. F. Ke, Y. C. Ko, and J. K. Lin, Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology 55, 349–353 (1998).PubMedCrossRefGoogle Scholar
  502. 502.
    502. J. I. Fenton, M. S. Wolff, M. W. Orth, and N. G. Hord, Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype. Carcinogenesis 23, 1065–1070 (2002).PubMedCrossRefGoogle Scholar
  503. 503.
    503. A. Banerji, J. Chakrabarti, A. Mitra, and A. Chatterjee, Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells. Cancer Lett 211, 235–242 (2004).PubMedCrossRefGoogle Scholar
  504. 504.
    504. R. Rukkumani, K. Aruna, P. S. Varma, and V. P. Menon, Curcumin influences hepatic expression patterns of matrix metalloproteinases in liver toxicity. Ital J Biochem 53, 61–66 (2004).PubMedGoogle Scholar
  505. 505.
    505. Q. H. Yao, D. Q. Wang, C. C. Cui, Z. Y. Yuan, S. B. Chen, X. W. Yao, J. K. Wang, and J. F. Lian, Curcumin ameliorates left ventricular function in rabbits with pressure overload: inhibition of the remodeling of the left ventricular collagen network associated with suppression of myocardial tumor necrosis factor-alpha and matrix metalloproteinase-2 expression. Biol Pharm Bull 27, 198–202 (2004).PubMedCrossRefGoogle Scholar
  506. 506.
    506. S. Y. Kim, S. H. Jung, and H. S. Kim, Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem Biophys Res Commun 337, 510–516 (2005).PubMedCrossRefGoogle Scholar
  507. 507.
    507. M. S. Woo, S. H. Jung, S. Y. Kim, J. W. Hyun, K. H. Ko, W. K. Kim, and H. S. Kim, Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335, 1017–1025 (2005).PubMedGoogle Scholar
  508. 508.
    508. E. Y. Shin, S. Y. Kim, and E. G. Kim, c-Jun N-terminal kinase is involved in motility of endothelial cell. Exp Mol Med 33, 276–283 (2001).PubMedGoogle Scholar
  509. 509.
    509. P. V. Leyon and G. Kuttan, Studies on the role of some synthetic curcuminoid derivatives in the inhibition of tumour specific angiogenesis. J Exp Clin Cancer Res 22, 77–83 (2003).PubMedGoogle Scholar
  510. 510.
    510. E. V. Bobrovnikova-Marjon, P. L. Marjon, O. Barbash, D. L. Vander Jagt, and S. F. Abcouwer, Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64, 4858–4869 (2004).PubMedCrossRefGoogle Scholar
  511. 511.
    511. W. G. Cao, M. Morin, V. Sengers, C. Metz, T. Roger, R. Maheux, and A. Akoum, Tumour necrosis factor-alpha up-regulates macrophage migration inhibitory factor expression in endometrial stromal cells via the nuclear transcription factor NF-kappaB. Hum Reprod 21, 421–428 (2006).PubMedCrossRefGoogle Scholar
  512. 512.
    512. M. L. Cho, Y. O. Jung, Y. M. Moon, S. Y. Min, C. H. Yoon, S. H. Lee, S. H. Park, C. S. Cho, D. M. Jue, and H. Y. Kim, Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 103, 159–166 (2006).PubMedCrossRefGoogle Scholar
  513. 513.
    513. B. H. Babu, B. S. Shylesh, and J. Padikkala, Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia 72, 272–277 (2001).PubMedCrossRefGoogle Scholar
  514. 514.
    514. S. Nishizono, T. Hayami, I. Ikeda, and K. Imaizumi, Protection against the diabetogenic effect of feeding tert–butylhydroquinone to rats prior to the administration of streptozotocin. Biosci Biotechnol Biochem 64, 1153–1158 (2000).PubMedCrossRefGoogle Scholar
  515. 515.
    515. P. Suryanarayana, M. Saraswat, T. Mrudula, T. P. Krishna, K. Krishnaswamy, and G. B. Reddy, Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46, 2092–2099 (2005).PubMedCrossRefGoogle Scholar
  516. 516.
    516. M. Dikshit, L. Rastogi, R. Shukla, and R. C. Srimal, Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart. Indian J Med Res 101, 31–35 (1995).PubMedGoogle Scholar
  517. 517.
    517. C. Nirmala and R. Puvanakrishnan, Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159, 85–93 (1996).PubMedCrossRefGoogle Scholar
  518. 518.
    518. C. Nirmala and R. Puvanakrishnan, Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol 51, 47–51 (1996).PubMedCrossRefGoogle Scholar
  519. 519.
    519. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).PubMedCrossRefGoogle Scholar
  520. 520.
    520. W. Zhang, D. Liu, X. Wo, Y. Zhang, M. Jin, and Z. Ding, Effects of Curcuma longa on proliferation of cultured bovine smooth muscle cells and on expression of low density lipoprotein receptor in cells. Chin Med J (Engl) 112, 308–311 (1999).Google Scholar
  521. 521.
    521. M. Sato, G. A. Cordis, N. Maulik, and D. K. Das, SAPKs regulation of ischemic preconditioning. Am J Physiol Heart Circ Physiol 279, H901–H907 (2000).PubMedGoogle Scholar
  522. 522.
    522. P. Manikandan, M. Sumitra, S. Aishwarya, B. M. Manohar, B. Lokanadam, and R. Puvanakrishnan, Curcumin modulates free radical quenching in myocardial ischaemia in rats. Int J Biochem Cell Biol 36, 1967–1980 (2004).PubMedCrossRefGoogle Scholar
  523. 523.
    523. G. Ramaswami, H. Chai, Q. Yao, P. H. Lin, A. B. Lumsden, and C. Chen, Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 40, 1216–1222 (2004).PubMedCrossRefGoogle Scholar
  524. 524.
    524. K. T. Nguyen, N. Shaikh, K. P. Shukla, S. H. Su, R. C. Eberhart, and L. Tang, Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Biomaterials 25, 5333–5346 (2004).PubMedCrossRefGoogle Scholar
  525. 525.
    525. R. Srivastava, V. Puri, R. C. Srimal, and B. N. Dhawan, Effect of curcumin on platelet aggregation and vascular prostacyclin synthesis. Arzneimittelforschung 36, 715–717 (1986).PubMedGoogle Scholar
  526. 526.
    526. K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52, 223–227 (1995).PubMedCrossRefGoogle Scholar
  527. 527.
    527. B. H. Shah, Z. Nawaz, S. A. Pertani, A. Roomi, H. Mahmood, S. A. Saeed, and A. H. Gilani, Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2 + signaling. Biochem Pharmacol 58, 1167–1172 (1999).PubMedCrossRefGoogle Scholar
  528. 528.
    528. C. Sumbilla, D. Lewis, T. Hammerschmidt, and G. Inesi, The slippage of the Ca2 + pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. J Biol Chem 277, 13,900–13,906 (2002).CrossRefGoogle Scholar
  529. 529.
    529. Y. Sasaki, H. Goto, C. Tohda, F. Hatanaka, N. Shibahara, Y. Shimada, K. Terasawa, and K. Komatsu, Effects of curcuma drugs on vasomotion in isolated rat aorta. Biol Pharm Bull 26, 1135–1143 (2003).PubMedCrossRefGoogle Scholar
  530. 530.
    530. C. M. Terry, J. A. Clikeman, J. R. Hoidal, and K. S. Callahan, Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells. Am J Physiol 274, H883–H891 (1998).PubMedGoogle Scholar
  531. 531.
    531. M. C. Ramirez-Tortosa, M. D. Mesa, M. C. Aguilera, J. L. Quiles, L. Baro, C. L. Ramirez-Tortosa, E. Martinez-Victoria, and A. Gil, Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147, 371–378 (1999).PubMedCrossRefGoogle Scholar
  532. 532.
    532. K. H. Thompson, K. Bohmerle, E. Polishchuk, C. Martins, P. Toleikis, J. Tse, V. Yuen, J. H. McNeill, and C. Orvig, Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J Inorg Biochem 98, 2063–2070 (2004).PubMedCrossRefGoogle Scholar
  533. 533.
    533. K. Keshavarz, The influence of turmeric and curcumin on cholesterol concentration of eggs and tissues. Poult Sci 55, 1077–1083 (1976).PubMedGoogle Scholar
  534. 534.
    534. K. Srinivasan and K. Sambaiah, The effect of spices on cholesterol 7 alpha-hydroxylase activity and on serum and hepatic cholesterol levels in the rat. Int J Vitam Nutr Res 61, 364–369 (1991).PubMedGoogle Scholar
  535. 535.
    535. K. B. Soni and R. Kuttan, Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36, 273–275 (1992).PubMedGoogle Scholar
  536. 536.
    536. H. M. Arafa, Curcumin attenuates diet–induced hypercholesterolemia in rats. Med Sci Monit 11, BR228–234, (2005).PubMedGoogle Scholar
  537. 537.
    537. R. K. Kempaiah and K. Srinivasan, Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats. J Nutr Biochem 17(7), 471–478 (2005).PubMedCrossRefGoogle Scholar
  538. 538.
    538. C. Fan, X. Wo, Y. Qian, J. Yin, and L. Gao, Effect of curcumin on the expression of LDL receptor in mouse macrophages. J Ethnopharmacol 105, 251–254 (2006).PubMedCrossRefGoogle Scholar
  539. 539.
    539. A. Ramirez Bosca, A. Soler, M. A. Carrion-Gutierrez, D. Pamies Mira, J. Pardo Zapata, J. Diaz-Alperi, A. Bernd, E. Quintanilla Almagro, and J. Miquel, An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev 114, 207–210 (2000).PubMedCrossRefGoogle Scholar
  540. 540.
    540. K. A. Naidu and N. B. Thippeswamy, Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem 229, 19–23 (2002).PubMedCrossRefGoogle Scholar
  541. 541.
    541. R. Olszanecki, J. Jawien, M. Gajda, L. Mateuszuk, A. Gebska, M. Korabiowska, S. Chlopicki, and R. Korbut, Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56, 627–635 (2005).PubMedGoogle Scholar
  542. 542.
    542. W. F. Chen, S. L. Deng, B. Zhou, L. Yang, and Z. L. Liu, Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radical Biol Med 40, 526–535 (2006).CrossRefGoogle Scholar
  543. 543.
    543. S. A. Frautschy, W. Hu, P. Kim, S. A. Miller, T. Chu, M. E. Harris-White, and G. M. Cole, Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22, 993–1005 (2001).PubMedCrossRefGoogle Scholar
  544. 544.
    544. D. S. Kim, S. Y. Park, and J. K. Kim, Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett 303, 57–61 (2001).PubMedCrossRefGoogle Scholar
  545. 545.
    545. G. P. Lim, T. Chu, F. Yang, W. Beech, S. A. Frautschy, and G. M. Cole, The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21, 8370–8377 (2001).PubMedGoogle Scholar
  546. 546.
    546. M. Grundman and P. Delaney, Antioxidant strategies for Alzheimer's disease. Proc Nutr Soc 61, 191–202 (2002).PubMedCrossRefGoogle Scholar
  547. 547.
    547. S. Y. Park and D. S. Kim, Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer's disease. J Nat Prod 65, 1227–1231 (2002).PubMedCrossRefGoogle Scholar
  548. 548.
    548. L. Adlerz, M. Beckman, S. Holback, R. Tehranian, V. Cortes Toro, and K. Iverfeldt, Accumulation of the amyloid precursor-like protein APLP2 and reduction of APLP1 in retinoic acid-differentiated human neuroblastoma cells upon curcumin-induced neurite retraction. Brain Res Mol Brain Res 119, 62–72 (2003).PubMedCrossRefGoogle Scholar
  549. 549.
    549. L. Baum and A. Ng, Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer'3s disease animal models. J Alzheimers Dis 6, 367–77; discussion 443–449 (2004).PubMedGoogle Scholar
  550. 550.
    550. K. Ono, K. Hasegawa, H. Naiki, and M. Yamada, Curcumin has potent anti–amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J Neurosci Res 75, 742–750 (2004).PubMedCrossRefGoogle Scholar
  551. 551.
    551. G. M. Cole, G. P. Lim, F. Yang, B. Teter, A. Begum, Q. Ma, M. E. Harris-White and S. A. Frautschy, Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 26(Suppl 1), 133–136 (2005).PubMedCrossRefGoogle Scholar
  552. 552.
    552. H. Kim, B. S. Park, K. G. Lee, C. Y. Choi, S. S. Jang, Y. H. Kim, and S. E. Lee, Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J Agric Food Chem 53, 8537–8541 (2005).PubMedCrossRefGoogle Scholar
  553. 553.
    553. J. M. Ringman, S. A. Frautschy, G. M. Cole, D. L. Masterman, and J. L. Cummings, A potential role of the curry spice curcumin in Alzheimer's disease. Curr Alzheimer Res 2, 131–136 (2005).PubMedCrossRefGoogle Scholar
  554. 554.
    554. F. Yang, G. P. Lim, A. N. Begum, O. J. Ubeda, M. R. Simmons, S. S. Ambegaokar, P. P. Chen, R. Kayed, C. G. Glabe, S. A. Frautschy, and G. M. Cole, Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280, 5892–5901 (2005).PubMedCrossRefGoogle Scholar
  555. 555.
    555. A. Apisariyakul, N. Vanittanakom, and D. Buddhasukh, Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49, 163–169 (1995).PubMedCrossRefGoogle Scholar
  556. 556.
    556. P. S. Negi, G. K. Jayaprakasha, L. Jagan Mohan Rao, and K. K. Sakariah, Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J Agric Food Chem 47, 4297–4300 (1999).PubMedCrossRefGoogle Scholar
  557. 557.
    557. M. Wuthi-udomlert, W. Grisanapan, O. Luanratana, and W. Caichompoo, Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian J Trop Med Public Health 31(Suppl 1), 178–182 (2000).PubMedGoogle Scholar
  558. 558.
    558. J. Jankun, A. M. Aleem, S. Malgorzewicz, M. Szkudlarek, M. I. Zavodszky, D. L. Dewitt, M. Feig, S. H. Selman, and E. Skrzypczak-Jankun, Synthetic curcuminoids modulate the arachidonic acid metabolism of human platelet 12-lipoxygenase and reduce sprout formation of human endothelial cells. Mol Cancer Ther 5, 1371–1382 (2006).PubMedCrossRefGoogle Scholar
  559. 559.
    559. E. Skrzypczak-Jankun, N. P. McCabe, S. H. Selman, and J. Jankun, Curcumin inhibits lipoxygenase by binding to its central cavity: theoretical and X-ray evidence. Int J Mol Med 6, 521–526 (2000).PubMedGoogle Scholar
  560. 560.
    560. M. E. Braga, P. F. Leal, J. E. Carvalho, and M. A. Meireles, Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51, 6604–6611 (2003).PubMedCrossRefGoogle Scholar
  561. 561.
    561. A. C. Manzan, F. S. Toniolo, E. Bredow, and N. P. Povh, Extraction of essential oil and pigments from Curcuma longa [L] by steam distillation and extraction with volatile solvents. J Agric Food Chem 51, 6802–6807 (2003).PubMedCrossRefGoogle Scholar
  562. 562.
    562. M. Backleh-Sohrt, P. Ekici, G. Leupold, and H. Parlar, Efficiency of foam fractionation for the enrichment of nonpolar compounds from aqueous extracts of plant materials. J Nat Prod 68, 1386–1389 (2005).PubMedCrossRefGoogle Scholar
  563. 563.
    563. V. M. Dirsch, H. Stuppner, and A. M. Vollmar, The Griess assay: suitable for a bio-guided fractionation of anti-inflammatory plant extracts? Planta Med 64, 423–426 (1998).PubMedCrossRefGoogle Scholar
  564. 564.
    564. G. K. Jayaprakasha, L. Jagan Mohan Rao, and K. K. Sakariah, Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50, 3668–3672 (2002).PubMedCrossRefGoogle Scholar
  565. 565.
    565. X. Sun, C. Gao, W. Cao, X. Yang, and E. Wang, Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. J Chromatogr A 962, 117–125 (2002).PubMedCrossRefGoogle Scholar
  566. 566.
    566. B. Tang, L. Ma, H. Y. Wang, and G. Y. Zhang, Study on the supramolecular interaction of curcumin and beta-cyclodextrin by spectrophotometry and its analytical application. J Agric Food Chem 50, 1355–1361 (2002).PubMedCrossRefGoogle Scholar
  567. 567.
    567. Y. Pak, R. Patek, and M. Mayersohn, Sensitive and rapid isocratic liquid chromatography method for the quantitation of curcumin in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 796, 339–346 (2003).PubMedCrossRefGoogle Scholar
  568. 568.
    568. M. Bernabe-Pineda, M. T. Ramirez-Silva, M. Romero-Romo, E. Gonzalez-Vergara, and A. Rojas-Hernandez, Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. Spectrochim Acta A Mol Biomol Spectrosc 60, 1091–1097 (2004).PubMedCrossRefGoogle Scholar
  569. 569.
    569. M. Lechtenberg, B. Quandt, and A. Nahrstedt, Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochem Anal 15, 152–158 (2004).PubMedCrossRefGoogle Scholar
  570. 570.
    570. M. J. Ansari, S. Ahmad, K. Kohli, J. Ali, and R. K. Khar, Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 39, 132–138 (2005).PubMedCrossRefGoogle Scholar
  571. 571.
    571. L. A. May, E. Tourkina, S. R. Hoffman, and T. A. Dix, Detection and quantitation of curcumin in mouse lung cell cultures by matrix-assisted laser desorption ionization time of flight mass spectrometry. Anal Biochem 337, 62–69 (2005).PubMedCrossRefGoogle Scholar
  572. 572.
    572. F. Wang, X. Wu, S. Liu, Z. Jia, and J. Yang, The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. J Fluoresc 16, 53–59 (2006).PubMedCrossRefGoogle Scholar
  573. 573.
    573. H. H. Tonnesen and J. Karlsen, Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z Lebensm Unters Forsch 180, 402–404 (1985).PubMedCrossRefGoogle Scholar
  574. 574.
    574. H. H. Tonnesen, J. Karlsen, and G. B. van Henegouwen, Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin. Z Lebensm Unters Forsch 183, 116–122 (1986).PubMedCrossRefGoogle Scholar
  575. 575.
    575. H. H. Tonnesen, H. de Vries, J. Karlsen, and G. Beijersbergen van Henegouwen, Studies on curcumin and curcuminoids. IX: Investigation of the photobiological activity of curcumin using bacterial indicator systems. J Pharm Sci 76, 371–373 (1987).PubMedCrossRefGoogle Scholar
  576. 576.
    576. T. A. Dahl, W. M. McGowan, M. A. Shand, and V. S. Srinivasan, Photokilling of bacteria by the natural dye curcumin. Arch Microbiol 151, 183–185 (1989).PubMedCrossRefGoogle Scholar
  577. 577.
    577. C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, and T. A. Dahl, Spectral and photochemical properties of curcumin. Photochem Photobiol 59, 295–302 (1994).PubMedGoogle Scholar
  578. 578.
    578. T. A. Dahl, P. Bilski, K. J. Reszka, and C. F. Chignell, Photocytotoxicity of curcumin. Photochem Photobiol 59, 290–294 (1994).PubMedGoogle Scholar
  579. 579.
    579. Y. J. Wang, M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15, 1867–1876 (1997).PubMedCrossRefGoogle Scholar
  580. 580.
    580. S. V. Jovanovic, C. W. Boone, S. Steenken, M. Trinoga, and R. B. Kaskey, How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123, 3064–3068 (2001).PubMedCrossRefGoogle Scholar
  581. 581.
    581. H. H. Tonnesen, Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Pharmazie 57, 820–824 (2002).PubMedGoogle Scholar
  582. 582.
    582. H. H. Tonnesen, M. Masson, and T. Loftsson, Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244, 127–135 (2002).PubMedCrossRefGoogle Scholar
  583. 583.
    583. E. M. Bruzell, E. Morisbak, and H. H. Tonnesen, Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photochem Photobiol Sci 4, 523–530 (2005).PubMedCrossRefGoogle Scholar
  584. 584.
    584. S. M. Khopde, K. I. Priyadarsini, D. K. Palit, and T. Mukherjee, Effect of solvent on the excited-state photophysical properties of curcumin. Photochem Photobiol 72, 625–631 (2000).PubMedCrossRefGoogle Scholar
  585. 585.
    585. F. Ortica and M. A. Rodgers, A laser flash photolysis study of curcumin in dioxane-water mixtures. Photochem Photobiol 74, 745–751 (2001).PubMedCrossRefGoogle Scholar
  586. 586.
    586. C. Parkanyi, M. R. Stem-Beren, O. R. Martinez, J. J. Aaron, M. Bulaceanu-MacNair and A. F. Arrieta, Solvatochromic correlations and ground- and excited-state dipole moments of curcuminoid dyes. Spectrochim Acta A Mol Biomol Spectrosc 60, 1805–1810 (2004).PubMedCrossRefGoogle Scholar
  587. 587.
    587. G. Began, E. Sudharshan, K. Udaya Sankar, and A. G. Appu Rao, Interaction of curcumin with phosphatidylcholine: A spectrofluorometric study. J Agric Food Chem 47, 4992–4997 (1999).PubMedCrossRefGoogle Scholar
  588. 588.
    588. A. C. Pulla Reddy, E. Sudharshan, A. G. Appu Rao, and B. R. Lokesh, Interaction of curcumin with human serum albumin: A spectroscopic study. Lipids 34, 1025–1029 (1999).PubMedCrossRefGoogle Scholar
  589. 589.
    589. F. Zsila, Z. Bikadi, and M. Simonyi, Unique, pH-dependent biphasic band shape of the visible circular dichroism of curcumin-serum albumin complex. Biochem Biophys Res Commun 301, 776–782 (2003).PubMedCrossRefGoogle Scholar
  590. 590.
    590. F. Zsila, Z. Bikadi, and M. Simonyi, Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2, 2902–2910 (2004).PubMedCrossRefGoogle Scholar
  591. 591.
    591. F. Zsila, Z. Bikadi, and M. Simonyi, Induced circular dichroism spectra reveal binding of the antiinflammatory curcumin to human alpha1-acid glycoprotein. Bioorg Med Chem 12, 3239–3245 (2004).PubMedGoogle Scholar
  592. 592.
    592. F. Wang, J. Yang, X. Wu and S. Liu, Study of the interaction of proteins with curcumin and SDS and its analytical application. Spectrochim Acta A Mol Biomol Spectrosc 61, 2650–6, (2005).PubMedCrossRefGoogle Scholar
  593. 593.
    593. H. Jiang, B. N. Timmermann, and D. R. Gang, Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J Chromatogr A 1111, 21–31 (2006).PubMedCrossRefGoogle Scholar
  594. 594.
    594. K. C. Thresiamma, J. George, and R. Kuttan, Protective effect of curcumin, ellagic acid and bixin on radiation induced toxicity. Indian J Exp Biol 34, 845–847 (1996).PubMedGoogle Scholar
  595. 595.
    595. K. C. Thresiamma, J. George, and R. Kuttan, Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity. J Exp Clin Cancer Res 17, 431–434 (1998).PubMedGoogle Scholar
  596. 596.
    596. Shishu, A. K. Singla, and I. P. Kaur, Inhibitory effect of curcumin and its natural analogues on genotoxicity of heterocyclic amines from cooked food. Indian J Exp Biol 40, 1365–1372 (2002).PubMedGoogle Scholar
  597. 597.
    597. K. Premkumar, S. Kavitha, S. T. Santhiya, A. R. Ramesh, and J. Suwanteerangkul, Interactive effects of saffron with garlic and curcumin against cyclophosphamide induced genotoxicity in mice. Asia Pacific J Clin Nutr 13, 292–294 (2004).Google Scholar
  598. 598.
    598. Vijayalaxmi, Genetic effects of turmeric and curcumin in mice and rats. Mutat Res 79, 125–132 (1980).PubMedCrossRefGoogle Scholar
  599. 599.
    599. M. Nagabhushan and S. V. Bhide, Nonmutagenicity of curcumin and its antimutagenic action versus chili and capsaicin. Nutr Cancer 8, 201–210 (1986).PubMedCrossRefGoogle Scholar
  600. 600.
    600. M. Nagabhushan, A. J. Amonkar, and S. V. Bhide, In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol 25, 545–547 (1987).PubMedCrossRefGoogle Scholar
  601. 601.
    601. V. K. Shalini and L. Srinivas, Lipid peroxide induced DNA damage: protection by turmeric (Curcuma longa). Mol Cell Biochem 77, 3–10 (1987).PubMedCrossRefGoogle Scholar
  602. 602.
    602. K. Polasa, B. Sesikaran, T. P. Krishna, and K. Krishnaswamy, Turmeric (Curcuma longa)-induced reduction in urinary mutagens. Food Chem Toxicol 29, 699–706 (1991).PubMedCrossRefGoogle Scholar
  603. 603.
    603. M. A. Azuine, J. J. Kayal, and S. V. Bhide, Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity. J Cancer Res Clin Oncol 118, 447–452 (1992).PubMedCrossRefGoogle Scholar
  604. 604.
    604. K. Polasa, T. C. Raghuram, T. P. Krishna, and K. Krishnaswamy, Effect of turmeric on urinary mutagens in smokers. Mutagenesis 7, 107–109 (1992).PubMedCrossRefGoogle Scholar
  605. 605.
    605. V. K. Goud, K. Polasa, and K. Krishnaswamy, Effect of turmeric on xenobiotic metabolising enzymes. Plant Foods Hum Nutr 44, 87–92 (1993).PubMedCrossRefGoogle Scholar
  606. 606.
    606. P. Verger, M. Chambolle, P. Babayou, S. Le Breton, and J. L. Volatier, Estimation of the distribution of the maximum theoretical intake for ten additives in France. Food Addit Contam 15, 759–766 (1998).PubMedGoogle Scholar
  607. 607.
    607. Y. Shukla, A. Arora, and P. Taneja, Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat Res 515, 197–202 (2002).PubMedGoogle Scholar
  608. 608.
    608. L. Srinivas and V. K. Shalini, DNA damage by smoke: protection by turmeric and other inhibitors of ROS. Free Radical Biol Med 11, 277–283 (1991).CrossRefGoogle Scholar
  609. 609.
    609. S. K. Abraham, L. Sarma, and P. C. Kesavan, Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat Res 303, 109–112 (1993).PubMedCrossRefGoogle Scholar
  610. 610.
    610. M. Subramanian, Sreejayan, M. N. Rao, T. P. Devasagayam, and B. B. Singh, Diminution of singlet oxygen-induced DNA damage by curcumin and related antioxidants. Mutat Res 311, 249–255 (1994).PubMedGoogle Scholar
  611. 611.
    611. Y. Oda, Inhibitory effect of curcumin on SOS functions induced by UV irradiation. Mutat Res 348, 67–73 (1995).PubMedCrossRefGoogle Scholar
  612. 612.
    612. L. M. Antunes, M. C. Araujo, F. L. Dias, and C. S. Takahashi, Modulatory effects of curcumin on the chromosomal damage induced by doxorubicin in Chinese hamster ovary cells. Teratog Carcinog Mutagen 19, 1–8 (1999).PubMedCrossRefGoogle Scholar
  613. 613.
    613. M. C. Araujo, F. L. Dias, and C. S. Takahashi, Potentiation by turmeric and curcumin of gamma-radiation-induced chromosome aberrations in Chinese hamster ovary cells. Teratog Carcinog Mutagen 19, 9–18 (1999).PubMedCrossRefGoogle Scholar
  614. 614.
    614. K. Polasa, A. N. Naidu, I. Ravindranath, and K. Krishnaswamy, Inhibition of B(a)P induced strand breaks in presence of curcumin. Mutat Res 557, 203–213 (2004).PubMedGoogle Scholar
  615. 615.
    615. A. Pal and A. K. Pal, Radioprotection of turmeric extracts in bacterial system. Acta Biol Hung 56, 333–343 (2005).PubMedCrossRefGoogle Scholar
  616. 616.
    616. A. K. Giri, S. K. Das, G. Talukder, and A. Sharma, Sister chromatid exchange and chromosome aberrations induced by curcumin and tartrazine on mammalian cells in vivo. Cytobios 62, 111–117 (1990).PubMedGoogle Scholar
  617. 617.
    617. H. Ahsan and S. M. Hadi, Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett 124, 23–30 (1998).PubMedCrossRefGoogle Scholar
  618. 618.
    618. J. Blasiak, A. Trzeciak, and J. Kowalik, Curcumin damages DNA in human gastric mucosa cells and lymphocytes. J Environ Pathol Toxicol Oncol 18, 271–276, (1999).PubMedGoogle Scholar
  619. 619.
    619. J. Blasiak, A. Trzeciak, E. Malecka-Panas, J. Drzewoski, T. Iwanienko, I. Szumiel, and M. Wojewodzka, DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to chromium and curcumin. Teratog Carcinog Mutagen 19, 19–31 (1999).PubMedCrossRefGoogle Scholar
  620. 620.
    620. M. C. Araujo, L. M. Antunes, and C. S. Takahashi, Protective effect of thiourea, a hydroxyl-radical scavenger, on curcumin-induced chromosomal aberrations in an in vitro mammalian cell system. Teratog Carcinog Mutagen 21, 175–180 (2001).PubMedCrossRefGoogle Scholar
  621. 621.
    621. K. Sakano and S. Kawanishi, Metal-mediated DNA damage induced by curcumin in the presence of human cytochrome P450 isozymes. Arch Biochem Biophys 405, 223–230 (2002).PubMedCrossRefGoogle Scholar
  622. 622.
    622. M. A. Mukundan, M. C. Chacko, V. V. Annapurna, and K. Krishnaswamy, Effect of turmeric and curcumin on BP-DNA adducts. Carcinogenesis 14, 493–496 (1993).PubMedCrossRefGoogle Scholar
  623. 623.
    623. S. S. Deshpande and G. B. Maru, Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Lett 96, 71–80 (1995).PubMedCrossRefGoogle Scholar
  624. 624.
    624. J. C. Chen, J. M. Hwang, G. W. Chen, M. F. Tsou, T. C. Hsia, and J. G. Chung, Curcumin decreases the DNA adduct formation, arylamines N-acetyltransferase activity and gene expression in human colon tumor cells (colo 205). In Vivo 17, 301–309 (2003).PubMedGoogle Scholar
  625. 625.
    625. Y. S. Chen, C. C. Ho, K. C. Cheng, Y. S. Tyan, C. F. Hung, T. W. Tan, and J. G. Chung, Curcumin inhibited the arylamines N-acetyltransferase activity, gene expression and DNA adduct formation in human lung cancer cells (A549). Toxicol In Vitro 17, 323–333 (2003).PubMedCrossRefGoogle Scholar
  626. 626.
    626. J. Nair, S. Strand, N. Frank, J. Knauft, H. Wesch, P. R. Galle, and H. Bartsch, Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 26, 1307–1315 (2005).PubMedCrossRefGoogle Scholar
  627. 627.
    627. Y. Chen, Y. Wu, W. Chen, and J. He, The effect of curcumin on mismatch repair (MMR) proteins hMSH2 and hMLH1 after ultraviolet (UV) irradiation on HL-60 cells. J Huazhong Univ Sci Technolog Med Sci 23, 124–126 (2003).PubMedCrossRefGoogle Scholar
  628. 628.
    628. A. P. Kulkarni, Y. T. Ghebremariam, and G. J. Kotwal, Curcumin inhibits the classical and the alternate pathways of complement activation. Ann NY Acad Sci 1056, 100–112 (2005).PubMedCrossRefGoogle Scholar
  629. 629.
    629. J. Cao, L. Jia, H. M. Zhou, Y. Liu, and L. F. Zhong, Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci 91(2), 476–483 (2006).PubMedCrossRefGoogle Scholar
  630. 630.
    630. A. Bielak–Mijewska, K. Piwocka, A. Magalska, and E. Sikora, P-Glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother Pharmacol 53, 179–185 (2004).PubMedCrossRefGoogle Scholar
  631. 631.
    631. T. C. Hour, J. Chen, C. Y. Huang, J. Y. Guan, S. H. Lu, and Y. S. Pu, Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate 51, 211–218 (2002).PubMedCrossRefGoogle Scholar
  632. 632.
    632. S. V. Bava, V. T. Puliappadamba, A. Deepti, A. Nair, D. Karunagaran, and R. J. Anto, Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280, 6301–6308 (2005).PubMedCrossRefGoogle Scholar
  633. 633.
    633. D. D. Deeb, H. Jiang, X. Gao, G. Divine, S. A. Dulchavsky, and S. C. Gautam, Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 5, 81–91 (2005).PubMedGoogle Scholar
  634. 634.
    634. D. Chirnomas, T. Taniguchi, M. de la Vega, A. P. Vaidya, M. Vasserman, A. R. Hartman, R. Kennedy, R. Foster, J. Mahoney, M. V. Seiden and A. D. D'Andrea, Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther 5, 952–961 (2006).PubMedCrossRefGoogle Scholar
  635. 635.
    635. D. Chendil, R. S. Ranga, D. Meigooni, S. Sathishkumar, and M. M. Ahmed, Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23, 1599–1607 (2004).PubMedCrossRefGoogle Scholar
  636. 636.
    636. A. Khafif, R. Hurst, K. Kyker, D. M. Fliss, Z. Gil, and J. E. Medina, Curcumin: A new radio-sensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132, 317–321 (2005).PubMedCrossRefGoogle Scholar
  637. 637.
    637. Y. Liu, R. L. Chang, X. X. Cui, H. L. Newmark, and A. H. Conney, Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha,25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells. Oncol Res 9, 19–29 (1997).PubMedGoogle Scholar
  638. 638.
    638. S. P. Verma, E. Salamone, and B. Goldin, Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun 233, 692–696 (1997).PubMedCrossRefGoogle Scholar
  639. 639.
    639. A. Khafif, S. P. Schantz, T. C. Chou, D. Edelstein, and P. G. Sacks, Quantitation of chemopreventive synergism between (–)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19, 419–424 (1998).PubMedCrossRefGoogle Scholar
  640. 640.
    640. A. Spingarn, P. G. Sacks, D. Kelley, A. J. Dannenberg, and S. P. Schantz, Synergistic effects of 13-cis retinoic acid and arachidonic acid cascade inhibitors on growth of head and neck squamous cell carcinoma in vitro. Otolaryngol Head Neck Surg 118, 159–164 (1998).PubMedCrossRefGoogle Scholar
  641. 641.
    641. I. Navis, P. Sriganth, and B. Premalatha, Dietary curcumin with cisplatin administration modulates tumour marker indices in experimental fibrosarcoma. Pharmacol Res 39, 175–179 (1999).PubMedCrossRefGoogle Scholar
  642. 642.
    642. M. A. Indap and M. S. Barkume, Efficacies of plant phenolic compounds on sodium butyrate induced anti-tumour activity. Indian J Exp Biol 41, 861–864 (2003).PubMedGoogle Scholar
  643. 643.
    643. J. Y. Koo, H. J. Kim, K. O. Jung, and K. Y. Park, Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food 7, 117–121 (2004).PubMedCrossRefGoogle Scholar
  644. 644.
    644. B. Du, L. Jiang, Q. Xia, and L. Zhong, Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy 52, 23–28 (2006).PubMedCrossRefGoogle Scholar
  645. 645.
    645. S. Lev-Ari, L. Strier, D. Kazanov, L. Madar-Shapiro, H. Dvory-Sobol, I. Pinchuk, B. Marian, D. Lichtenberg, and N. Arber, Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 11, 6738–6744 (2005).PubMedCrossRefGoogle Scholar
  646. 646.
    646. S. Sen, H. Sharma, and N. Singh, Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331, 1245–1252 (2005).PubMedCrossRefGoogle Scholar
  647. 647.
    647. R. L. Eckert, J. F. Crish, T. Efimova, and S. Balasubramanian, Opposing action of curcumin and green tea polyphenol in human keratinocytes. Mol Nutr Food Res 50, 123–129 (2006).PubMedCrossRefGoogle Scholar
  648. 648.
    648. T. O. Khor, Y. S. Keum, W. Lin, J. H. Kim, R. Hu, G. Shen, C. Xu, A. Gopalakrishnan, B. Reddy, X. Zheng, A. H. Conney, and A. N. Kong, Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66, 613–621 (2006).PubMedCrossRefGoogle Scholar
  649. 649.
    649. S. Lev-Ari, L. Strier, D. Kazanov, O. Elkayam, D. Lichtenberg, D. Caspi, and N. Arber, Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology (Oxford) 45, 171–177 (2006).CrossRefGoogle Scholar
  650. 650.
    650. S. Yasni, K. Yoshiie, H. Oda, M. Sugano, and K. Imaizumi, Dietary Curcuma xanthorrhiza Roxb. increases mitogenic responses of splenic lymphocytes in rats, and alters populations of the lymphocytes in mice. J Nutr Sci Vitaminol (Tokyo) 39, 345–354 (1993).Google Scholar
  651. 651.
    651. E. H. South, J. H. Exon, and K. Hendrix, Dietary curcumin enhances antibody response in rats. Immunopharmacol Immunotoxicol 19, 105–119 (1997).PubMedGoogle Scholar
  652. 652.
    652. S. Antony, R. Kuttan, and G. Kuttan, Immunomodulatory activity of curcumin. Immunol Invest 28, 291–303 (1999).PubMedGoogle Scholar
  653. 653.
    653. X. Gao, J. Kuo, H. Jiang, D. Deeb, Y. Liu, G. Divine, R. A. Chapman, S. A. Dulchavsky, and S. C. Gautam, Immunomodulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem Pharmacol 68, 51–61 (2004).PubMedCrossRefGoogle Scholar
  654. 654.
    654. S. E. Ilsley, H. M. Miller, and C. Kamel, Effects of dietary quillaja saponin and curcumin on the performance and immune status of weaned piglets. J Anim Sci 83, 82–88 (2005).PubMedGoogle Scholar
  655. 655.
    655. G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 174, 8116–8124 (2005).PubMedGoogle Scholar
  656. 656.
    656. X. Li and X. Liu, Effect of curcumin on immune function of mice. J Huazhong Univ Sci Technolog Med Sci 25, 137–140 (2005).PubMedCrossRefGoogle Scholar
  657. 657.
    657. V. S. Yadav, K. P. Mishra, D. P. Singh, S. Mehrotra, and V. K. Singh, Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27, 485–497 (2005).PubMedCrossRefGoogle Scholar
  658. 658.
    658. D. Ranjan, T. D. Johnston, G. Wu, L. Elliott, S. Bondada, and M. Nagabhushan, Curcumin blocks cyclosporine A-resistant CD28 costimulatory pathway of human T-cell proliferation. J Surg Res 77, 174–178 (1998).PubMedCrossRefGoogle Scholar
  659. 659.
    659. D. Ranjan, A. Siquijor, T. D. Johnston, G. Wu, and M. Nagabhuskahn, The effect of curcumin on human B-cell immortalization by Epstein-Barr virus. Am Surg 64, 47–51; discussion 51–52 (1998).PubMedGoogle Scholar
  660. 660.
    660. M. Deters, C. Siegers, P. Muhl, and W. Hansel, Choleretic effects of curcuminoids on an acute cyclosporin-induced cholestasis in the rat. Planta Med 65, 610–613 (1999).PubMedCrossRefGoogle Scholar
  661. 661.
    661. S. C. Chueh, M. K. Lai, I. S. Liu, F. C. Teng, and J. Chen, Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions. Transplant Proc 35, 1603–1605 (2003).PubMedCrossRefGoogle Scholar
  662. 662.
    662. M. Deters, T. Klabunde, H. Meyer, K. Resch, and V. Kaever, Effects of curcumin on cyclosporine-induced cholestasis and hypercholesterolemia and on cyclosporine metabolism in the rat. Planta Med 69, 337–343 (2003).PubMedCrossRefGoogle Scholar
  663. 663.
    663. N. Tirkey, G. Kaur, G. Vij, and K. Chopra, Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol 5, 15 (2005).PubMedCrossRefGoogle Scholar
  664. 664.
    664. H. R. Ju, H. Y. Wu, S. Nishizono, M. Sakono, I. Ikeda, M. Sugano, and K. Imaizumi, Effects of dietary fats and curcumin on IgE-mediated degranulation of intestinal mast cells in brown Norway rats. Biosci Biotechnol Biochem 60, 1856–1860 (1996).PubMedGoogle Scholar
  665. 665.
    665. Z. Sui, R. Salto, J. Li, C. Craik, and P. R. Ortiz de Montellano, Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1, 415–422 (1993).PubMedCrossRefGoogle Scholar
  666. 666.
    666. A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol 49, 1165–1170 (1995).PubMedCrossRefGoogle Scholar
  667. 667.
    667. W. C. Jordan and C. R. Drew, Curcumin–a natural herb with anti-HIV activity. J Natl Med Assoc 88, 333 (1996).PubMedGoogle Scholar
  668. 668.
    668. S. Barthelemy, L. Vergnes, M. Moynier, D. Guyot, S. Labidalle, and E. Bahraoui, Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol 149, 43–52 (1998).PubMedCrossRefGoogle Scholar
  669. 669.
    669. M. Hergenhahn, U. Soto, A. Weninger, A. Polack, C. H. Hsu, A. L. Cheng, and F. Rosl, The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells. Mol Carcinog 33, 137–145 (2002).PubMedCrossRefGoogle Scholar
  670. 670.
    670. M. M. Taher, G. Lammering, C. Hershey, and K. Valerie, Curcumin inhibits ultraviolet light induced human immunodeficiency virus gene expression. Mol Cell Biochem 254, 289–297 (2003).PubMedCrossRefGoogle Scholar
  671. 671.
    671. H. Chai, S. Yan, P. Lin, A. B. Lumsden, Q. Yao, and C. Chen, Curcumin blocks HIV protease inhibitor ritonavir-induced vascular dysfunction in porcine coronary arteries. J Am Coll Surg 200, 820–830 (2005).PubMedCrossRefGoogle Scholar
  672. 672.
    672. O. Vajragupta, P. Boonchoong, G. M. Morris, and A. J. Olson, Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett 15, 3364–3368 (2005).PubMedCrossRefGoogle Scholar
  673. 673.
    673. P. S. Negi, G. K. Jayaprakasha, L. Jagan Mohan Rao, and K. K. Sakariah, Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J Agric Food Chem 47, 4297–4300 (1999).PubMedCrossRefGoogle Scholar
  674. 674.
    674. G. B. Mahady, S. L. Pendland, G. Yun, and Z. Z. Lu, Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22, 4179–4181 (2002).PubMedGoogle Scholar
  675. 675.
    675. A. Tantaoui-Elaraki and L. Beraoud, Inhibition of growth and aflatoxin production in Aspergillus parasiticus by essential oils of selected plant materials. J Environ Pathol Toxicol Oncol 13, 67–72 (1994).PubMedGoogle Scholar
  676. 676.
    676. M. Wuthi-udomlert, W. Grisanapan, O. Luanratana, and W. Caichompoo, Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian J Trop Med Public Health 31(Suppl 1), 178–182 (2000).PubMedGoogle Scholar
  677. 677.
    677. M. K. Kim, G. J. Choi, and H. S. Lee, Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem 51, 1578–1581 (2003).PubMedCrossRefGoogle Scholar
  678. 678.
    678. G. N. Roth, A. Chandra, and M. G. Nair, Novel bioactivities of Curcuma longa constituents. J Nat Prod 61, 542–545 (1998).PubMedCrossRefGoogle Scholar
  679. 679.
    679. R. C. Reddy, P. G. Vatsala, V. G. Keshamouni, G. Padmanaban, and P. N. Rangarajan, Curcumin for malaria therapy. Biochem Biophys Res Commun 326, 472–474 (2005).PubMedCrossRef