Advertisement

Abstract

During the past 20 years there has been a remarkable growth in the use of fluorescence in the biological sciences. Fluorescence spectroscopy and time-resolved fluorescence are considered to be primarily research tools in biochemistry and biophysics. This emphasis has changed, and the use of fluorescence has expanded. Fluorescence is now a dominant methodology used extensively in biotechnology, flow cytometry, medical diagnostics, DNA sequencing, forensics, and genetic analysis, to name a few. Fluorescence detection is highly sensitive, and there is no longer the need for the expense and difficulties of handling radioactive tracers for most biochemical measurements. There has been dramatic growth in the use of fluorescence for cellular and molecular imaging. Fluorescence imaging can reveal the localization and measurements of intracellular molecules, sometimes at the level of single-molecule detection.

Fluorescence technology is used by scientists from many disciplines. This volume describes the principles of fluorescence that underlie its uses in the biological and chemical sciences. Throughout the book we have included examples that illustrate how the principles are used in different applications.

Keywords

Emission Spectrum Quantum Yield Human Serum Albumin Resonance Energy Transfer Fluorescence Correlation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herschel, Sir JFW. 1845. On a case of superficial colour presented by a homogeneous liquid internally colourless. Phil Trans Roy Soc (London) 135:143–145.CrossRefGoogle Scholar
  2. 2.
    Gillispie CC, ed. 1972. John Frederick William Herschel. In Dictionary of scientific biography, Vol. 6, pp. 323–328. Charles Scribner’s Sons, New York.Google Scholar
  3. 3.
    Undenfriend S. 1995. Development of the spectrophotofluorometer and its commercialization. Protein Sci 4:542–551.CrossRefGoogle Scholar
  4. 4.
    Martin BR, Richardson F. 1979. Lanthanides as probes for calcium in biological systems, Quart Rev Biophys 12:181–203.CrossRefGoogle Scholar
  5. 5.
    Berlman IB. 1971. Handbook of fluorescence spectra of aromatic molecules, 2nd ed. Academic Press, New York.Google Scholar
  6. 6.
    Jablonski A. 1935. Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys 94:38–46.CrossRefGoogle Scholar
  7. 7.
    Szudy J, ed. 1998. Born 100 years ago: Aleksander Jablonski (1898–1980), Uniwersytet Mikolaja Kopernika, Torun, Poland.Google Scholar
  8. 8.
    Acta Physica Polonica. 1978. Polska Akademia Nauk Instytut Fizyki. Europhys J, Vol. A65(6).Google Scholar
  9. 9.
    Stokes GG. 1852. On the change of refrangibility of light. Phil Trans R Soc (London) 142:463–562.CrossRefGoogle Scholar
  10. 10.
    Kasha M. 1950. Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:14–19.CrossRefGoogle Scholar
  11. 11.
    Courtesy of Dr. Ignacy Gryczynski.Google Scholar
  12. 12.
    Birks JB. 1970. Photophysics of aromatic molecules. John Wiley & Sons, New York.Google Scholar
  13. 13.
    Lakowicz JR, Balter A. 1982. Analysis of excited state processes by phase-modulation fluorescence spectroscopy. Biophys Chem 16:117–132.CrossRefGoogle Scholar
  14. 14.
    Photo courtesy of Dr. Ignacy Gryczynski and Dr. Zygmunt Gryczynski.Google Scholar
  15. 15.
    Birks JB. 1973. Organic molecular photophysics. John Wiley & Sons, New York.Google Scholar
  16. 16.
    Strickler SJ, Berg RA. 1962. Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37(4):814–822.CrossRefGoogle Scholar
  17. 17.
    See [12], p. 120.Google Scholar
  18. 18.
    Berberan-Santos MN. 2001. Pioneering contributions of Jean and Francis Perrin to molecular luminescence. In New trends in fluorescence spectroscopy: applications to chemical and life sciences, Vol. 18, pp. 7–33. Ed B Valeur, J-C Brochon. Springer, New York.Google Scholar
  19. 19.
    Förster Th. 1948. Intermolecular energy migration and fluorescence (Transl RS Knox). Ann Phys (Leipzig) 2:55–75.Google Scholar
  20. 20.
    Stryer L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846.CrossRefGoogle Scholar
  21. 21.
    Lakowicz JR. 1995. Fluorescence spectroscopy of biomolecules. In Encyclopedia of molecular biology and molecular medicine, pp. 294–306. Ed RA Meyers. VCH Publishers, New York.Google Scholar
  22. 22.
    Haugland RP. 2002. LIVE/DEAD BacLight bacterial viability kits. In Handbook of fluorescent probes and research products, 9th ed., pp. 626–628. Ed J Gregory. Molecular Probes, Eugene, OR.Google Scholar
  23. 23.
    Gryczynski I, Lakowicz JR. Unpublished observations.Google Scholar
  24. 24.
    Lakowicz JR, Gryczynski I, Laczko G, Wiczk W, Johnson ML. 1994. Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin, C, and phospholipids. Protein Sci 3:628–637.Google Scholar
  25. 25.
    Morrison LE, Stols LM. 1993. Sensitive fluorescence-based thermo-dynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32:3095–3104.CrossRefGoogle Scholar
  26. 26.
    Santangelo PJ, Nix B, Tsourkas A, Bao G. 2004. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32(6):e57.CrossRefGoogle Scholar
  27. 27.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell, 4th ed. Garland Science, New York.Google Scholar
  28. 28.
    Diaspro A, ed. 2002, Confocal and two-photon microscopy, foundations, applications, and advances. Wiley-Liss, New York.Google Scholar
  29. 29.
    Masters BR, Thompson BJ, eds. 2003. Selected papers on multiphoton excitation microscopy. SPIE Optical Engineering Press, Bellingham, Washington.Google Scholar
  30. 30.
    Zipfel WR, Williams RM, Webb WW. 2003. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnol 21(11):1369–1377.CrossRefGoogle Scholar
  31. 31.
    Rigler R, Elson ES. 2001. Fluorescence correlation spectroscopy. Springer, Berlin.Google Scholar
  32. 32.
    Hegener O, Jordan R, Häberlein H. 2004. Dye-labeled benzodi-azepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy. J Med Chem 47:3600–3605.CrossRefGoogle Scholar
  33. 33.
    Rigler R, Orrit M, Basché T. 2001. Single molecule spectroscopy. Springer, Berlin.Google Scholar
  34. 34.
    Zander Ch, Enderlein J, Keller RA, eds. 2002. Single molecule detection in solution, methods and applications. Wiley-VCH, Darmstadt, Germany.Google Scholar
  35. 35.
    Li Q, Ruckstuhl T, Seeger S. 2004. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules. J Phys Chem B 108:8324–8329.CrossRefGoogle Scholar
  36. 36.
    Ha T. 2004. Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43(14):4055–4063.CrossRefGoogle Scholar
  37. 37.
    Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A. 2004. Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101(19):7317–7322.CrossRefGoogle Scholar
  38. 38.
    Kasha M. 1960. Paths of molecular excitation. Radiation Res 2:243–275.CrossRefGoogle Scholar
  39. 39.
    Hagag N, Birnbaum ER, Darnall DW. 1983. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Biochemistry 22:2420–2427.CrossRefGoogle Scholar
  40. 40.
    O’Neil KT, Wolfe HR, Erickson-Viitanen S, DeGrado WF. 1987. Fluorescence properties of calmodulin-binding peptides reflect alpha-helical periodicity. Science 236:1454–1456.CrossRefGoogle Scholar
  41. 41.
    Johnson DA, Leathers VL, Martinez A-M, Walsh DA, Fletcher WH. 1993. Fluorescence resonance energy transfer within a heterochro-matic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Biochemistry 32:6402–6410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations