The Contrast Formation in Optical Microscopy

  • Ping-Chin Cheng

Abstract

In any form of microscopy, one needs not only an imaging system with enough resolution to delineate the fine details of the specimen but also a suitable contrast mechanism by which to “see” the shape of the structures of interest. Contrast is the difference between the signal in one pixel and that in another that conveys to the viewer information about the shape of the specimen. It is the difference between a blank screen and an image.

References

  1. An, J.J., Goodman, M.B., and Schwartz, E.A., 1990, Simultaneous fluorescent and transmission laser scanning confocal microscopy, Biophys. J. 59:155a.Google Scholar
  2. Barad, Y., Eisenberg, H., Horowitz, M., and Silberberg, Y., 1997, Nonlinear scanning laser microscopy by third-harmonic generation, App. Phys. Lett. 70:922-924.CrossRefGoogle Scholar
  3. Barr, M.L., and Kieman, J.A., 1988, The Human Nervous System — An Anatomical Viewpoint, 5th ed., Lippincott, London, p. 17.Google Scholar
  4. Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford.Google Scholar
  5. Boyde, A., 1985, The tandem scanning reflected light microscope. Part II. Pre-Micro’84 application at UCL, Proc. RMS 20:131-139.Google Scholar
  6. Carminati, R., and Greffet, J.J., 1995a, Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function, Opt. Commun. 116:316-321.CrossRefGoogle Scholar
  7. Carminati, R., and Greffet, J., 1995b, Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface: Boundary conditions for diffusion of light, J. Opt. Soc. Am. A 12:2716.CrossRefGoogle Scholar
  8. Carney, P., and Schotland, J., 2001, Three-dimensional total internal reflection microscopy, Opt. Lett. 26:1072.CrossRefPubMedGoogle Scholar
  9. Chen, I.-H., Chu, S.-W., Sun, C.-K., Lin, B.-L., and Cheng, P.C., 2002, Wave- length dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:Sapphire and Cr:Forsterite laser sources, Opt. Quantum. 34(12):1251-1266.Google Scholar
  10. Chen, V.K.-H., and Cheng, P.C., 1989, Real-time confocal imaging of Stentor coeruleus in epi-reflective mode by using a Tracer Northern Tandem scan- ning microscope, Proc. 47th Annual Meeting EMSA 47:138-139.Google Scholar
  11. Chen, Y., Mills, J.D., and Periasamy, A., 2003, Protein interactions in cells and tissues using FLIM and FRET, Differentiation. 71:528-541.CrossRefPubMedGoogle Scholar
  12. Cheng, P.C., and Cheng, W.Y., 2001, Artifacts in confocal and multi-photon microscopy, Microsc. Microanal. 7:1018-1019.Google Scholar
  13. Cheng, P.C., and Kriete, A., 1995, Image contrast in confocal light microscopy, In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 281-310.Google Scholar
  14. Cheng, P.C., and Lin, T.H., 1990, The use of computer-controlled substage folding optics to enhance signal strength in fluorescent confocal microscopy, Trans. Roy. Micros. Soc. 1:459-642.Google Scholar
  15. Cheng, P.C., Chen, V.H.-K., Kirn, H.G., and Pearson, R.E., 1989, An epi- fluorescent spinning-disk confocal microscope, Proc. 47th Annual Meeting EMSA 47:136-137.Google Scholar
  16. Cheng, P.C., Hibbs, A.R., Yu, H., and Cheng, W.Y., 2002, An estimate of the contribution of spherical aberration and self-shadowing in confocal and multi-photon fluorescent microscopy, Microsc. Microanal. 8:1068-1069.Google Scholar
  17. Cheng, P.C., Pareddy, D.R., Lin, T.H., Samarabandu, J.K., Acharya, R., Wang, G., and Liou, W.S., 1994, Confocal microscopy of botanical specimens, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 339-380.Google Scholar
  18. Cheng, P.C., Sun, C.-K., Kao, F.-J, Lin, B.L., and Chu, S.-W., 2001, Nonlinear multi-modality spectro-microscopy: Multiphoton fluorescence, SHG and THG of biological specimen, SPIE Proc. 4262:98-103.Google Scholar
  19. Cheng, P.C., Sun, C.K., Lin, B.L., Chu, S.W., Chen, I.S., Liu, T.M., Lee, S.P., Liu, H.L., Kuo, M.X., and Lin, D.J., 2002, Biological photonic crystals —Revealed by multi-photon nonlinear microscopy, Microsc. Microanal.8:268-269.CrossRefGoogle Scholar
  20. Cheng, P.C., Sun, C.K., Cheng, W.Y., and Walden, D.B., 2003, Nonlinear bio-photonic crystal effect of opaline silica deposits in maize, J. Scanning Microsc. 235:80-81.Google Scholar
  21. Chu, S.W., Chen, I.S., Li, T.M., Lin, B.L., Cheng, P.C., and Sun, C.K., 2001, Multi-modality nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser, Opt. Lett. 26:1909-1911.Google Scholar
  22. Chu, S.W., Chen, I.-S., Liu, T.-M., Sun, C.-K., Lin, B.-L., Lee, S.-P., Cheng, P.C., Liu, H.-L., Kuo, M.-X., and Lin, D.-J., 2003, Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,J. Microsc. 208:190-200.CrossRefGoogle Scholar
  23. Cogswell, C.J., 1994, High resolution confocal microscopy of phase and ampli- tude objects, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 87-102.Google Scholar
  24. Deng, Y., Marko, M., Buttle, K.F., Leith, A., Mieczkowski, M., and Mannella, C.A., 1999, Cubic membrane structure in amoeba (Chaos carolinesis) mitochondria determined by electron microscopy tomography, J. Struct. Biol. 127:231-239.CrossRefPubMedGoogle Scholar
  25. Holmes, T., and Cheng, P.C., 2005, Basic principles of imaging, In: Multi-Modality Microscopy (H. Yu, P.C. Cheng, P.C. Lin, and F.J. Kao, eds.), World Scientific Publishing, in press.Google Scholar
  26. Johansen, D.A., 1940, Plant Microtechnique, McGraw-Hill, New York.Google Scholar
  27. Oldenbourg, R., 2004, Polarization microscopy with the LC-PolScope, In: Live Cell Imaging: A Laboratory Manual (D.L. Spector and R.D. Goldman, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 205-237.Google Scholar
  28. Overington, J., 1976, Vision and Acquisition, Pentech Press, London. Paddock, S.W., 1989, Tandem scanning reflected-light microscopy of cell- stratum adhesions and stress fibers in Swiss 3T3 cells, J. Cell. Sci. 93:143-146.Google Scholar
  29. Patterson, G., and Lippincott-Schwartz, J., 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science. 297:1873-1877.CrossRefPubMedGoogle Scholar
  30. Prieve, D.C., and Walz, J.Y., 1993, The scattering of an evanescent surface wave by a dielectric sphere in total internal reflection microscopy, Appl. Opt. 32:1629.CrossRefPubMedGoogle Scholar
  31. Reits, E.A., Neefjes, J.J., 2001, From fixed to FRAP: Measuring protein mobility and activity in living cells, Nat. Cell Biol. 3(6):E145-147. Rose, A., 1948, Television pickup tubes and the problem of noise, Adv. Electron 1:131.CrossRefPubMedGoogle Scholar
  32. Scheibel, M.E., and Scheibel, A.B., 1970, The rapid Golgi method. Indian summer or renaissance? In: Contemporary Research Methods in Neuro- anatomy (W.J.H. Nauta and S.O.E. Ebbeson, eds.), Springer-Verlag, New York, pp. 1-11.Google Scholar
  33. Sharonov, S., Morjani, H., and Manfait, M., 1992, Confocal spectral imaging analysis: A new concept to study the drug distribution in single living cancer cell, Anticancer Res. 12:1804.Google Scholar
  34. Sheppard, C.J.R., 1993, Confocal microscopy: Basic principles and system per- formance, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 1-31.Google Scholar
  35. Shinozaki, D.M., Cheng, P.C., Haridoss, A., and Fenster, A., 1991, Three dimensional optical microscopy of water trees in polyethylene, J. Mater. Sci. 26:6151-6160.CrossRefGoogle Scholar
  36. Shinozald, D.M., Klauzner, A., and Cheng, P.C., 1991, Inelastic deformation of polyimide-copper thin films, Mater. Sci. Eng. A 142:135-144.CrossRefGoogle Scholar
  37. Shribak, M., and Oldenbourg, R., 2003, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions, Appl. Opt. 42:3009-3017.Google Scholar
  38. Sun, C.K., 2005, Abstract of Focus on Microscopy, Jena, Germany.Google Scholar
  39. Sun, C.K., Huang, Y.C., Liu, H.C., Lin, B.L., and Cheng, P.C., 2001, Cell manipulation using diamond microparticles as optical tweezers handles, J. Opt. Soc. Amer. B, 18(10):1483-1489.Google Scholar
  40. Tsou, C.-H., and Fu, Y.L., 2002, Pollen tetrad formation in Annona (Annonaceae): Proexine formation and binding mechanism, Am. J. Botany 89:734-747.CrossRefGoogle Scholar
  41. Van Labeke, D., Barchiesi, D., and Baida, F., 1995, Optical characterization of nanosources used in scanning near-field optical microscopy, J. Opt. Soc.Am. A 12(4):695-703.CrossRefGoogle Scholar
  42. Watson, T.F., 1989, Real-time confocal microscopy of high speed dental burr/tooth cutting interactions, Abstracts of the 1st International Conference on Confocal Microscopy and the 2nd International Conference on 3D Image Processing in Microscopy, Amsterdam, March 15-17, 1989.Google Scholar
  43. Watson, T.F., Azzopardi, A., Etman, L.M., Cheng, P.C., and Sidhu, S.K., 2000, Confocal and mulit-photon microscopy of dental tissues and biomaterials, Am. J. Dentistry 13:19-24.Google Scholar
  44. Webb, W.W., 1976, Perspectives on Cell Surface Mobility, In: Measurement of Lateral Transport on Cell Surfaces (V.T. Marchesi, ed.), Alan R. Liss, Inc., New York, pp. 276-278.Google Scholar
  45. Wells, K.S., Sandison, D.R., Strickler, J.H., and Webb, W.W., 1990, Quantita- tive fluorescence imaging with laser scanning confocal microscopy, In: Handbook of Biological Confocal Microscopy (J. Pawley, ed.), Plenum Press, New York.Google Scholar
  46. White, J.G., Amos, W.B., and Fordham, F., 1987, An evaluation of confocal vs. conventional imaging of biological structures by fluorescent light microscopy, J. Cell Biol. 105:41-48.CrossRefGoogle Scholar
  47. Wijaendts van Resandt, W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1984, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29-34.Google Scholar
  48. Xiao, G.O., Corle, T.R., and Kino, G.S., 1988, Real-time confocal scanning microscope, Appl. Phys. Lett. 53:716-718.CrossRefGoogle Scholar
  49. Zochowski, M., Wachowiak, M., Falk, C.X., Cohen, L.B., Lam, Y.W., Antic, S., and Zecevic, D., 2000, Imaging membrane potential with voltage- sensitive dyes, Biol. Bull. 198:1-21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ping-Chin Cheng
    • 1
    • 2
  1. 1.State University of New York at BuffaloBuffalo
  2. 2.National University of SingaporeSingapore

Personalised recommendations