Advertisement

Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells

  • Irina Majoul
  • Yiwei Jia
  • Rainer Duden

Abstract

After formulating this philosophic question in a poetic form, Leonardo the Scientist, provides us with a real experimental (optical) setup. “As I propose to treat the nature of the moon, it is necessary that I first describe the perspective of mirrors, whether plane, concave, or convex,” (B.M.94r – Arundel MS in British Museum). Next, in the pages of Codex Atlanticus (C.A.190r), Leonardo invites us to “Construct the glasses to see the moon magnified” and half a millennium later we are still following him for, as Bulgakov famously said, “Manuscripts do not burn!”

Keywords

Fluorescence Resonance Energy Transfer Cholera Toxin Resonance Energy Transfer Fluorescence Recovery After Photobleaching Fluorescence Resonance Energy Transfer Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacia, K., Majoul, I.V., and Schwille, P., 2002, Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis, Biophys. J. 83:1184–1193.Google Scholar
  2. Bastiaens, P.I.H., and Jovin, T.M., 1998, Fluorescence resonance energy transfer (FRET) microscopy, In: Cell Biology: A Laboratory Handbook (J.E. Celis, ed.), Academic Press, New York, pp. 136–146.Google Scholar
  3. Bastiaens, P.I.H., and Pepperkok, R., 2000, Observing proteins in their natural habitat: The living cell, Trends Biochem. Sci. 25:631–637.Google Scholar
  4. Bastiaens, P.I., and Squire, A., 1999, Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell, Trends Cell Biol. 9:48–52.CrossRefPubMedGoogle Scholar
  5. Bastiaens, P.I.H., Majoul, I.V., Verveer, P.J., Soling. H.D., and Jovin, T.M., 1996, Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin, EMBO J. 15:4246–4253.PubMedGoogle Scholar
  6. Bezzi, P., Gundersen, V., Galbete, J.L., Seifert, G., Steinhauser, C., Pilati, E., and Volterra, A., 2004, Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate, Nat. Neurosci. 7:613–620.Google Scholar
  7. Blackman, S.M., Piston, D.W., and Beth, A.H., 1998, Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer, Biophys. J. 75:1117–1130.Google Scholar
  8. Blinks, J.R., Mattingly, P.H., Jewell, B.R., van Leeuwen, M., Harrer, G.C., and Allen, D.G., 1978, Practical aspects of the use of aequorin as a calcium indicator: Assay, preparation, microinjection, and interpretation of signals, Methods Enzymol. 57:292–328. Google Scholar
  9. Bunt, G., and Wouters, F.S., 2004, Visualization of molecular activities inside living cells with fluorescent labels, Int. Rev. Cytol. 237:205–277.CrossRefPubMedGoogle Scholar
  10. Butkevich, E., Hulsmann, S., Wenzel, D., Shirao, T., Duden, R., and Majoul, I., 2004, Drebrin stabilizes connexin-43 and links gap junctions to the submembrane cytoskeleton, Curr. Biol. 14:650–658.Google Scholar
  11. Campbell, R.E., Tour, R., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y., 2002, A monomeric red fluorescent protein, Proc. Natl. Acad. Sci. USA 99:7877–7882.CrossRefPubMedGoogle Scholar
  12. Chalfie, M., 1995, Green fluorescent protein, Photochem. Photobiol. 62:651–656.CrossRefGoogle Scholar
  13. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994, Green fluorescent protein as a marker for gene expression, Science 263:802–805.CrossRefPubMedGoogle Scholar
  14. Choi, S.R., Zhuang, Z.P., Chacko, A.M, Acton, P.D., Tjuvajer-Gelovani, J., Doubrovin, M., Chu, D.C., and Kung, H.F., 2005, SPECT imaging of herpes simplex virus Type1 thymidine kinase gene expression by [(123)I]FIAU(1). Acad. Radiol. 12:798–805.CrossRefPubMedGoogle Scholar
  15. Clegg, R.M., 1992, Fluorescence resonance energy transfer and nucleic acids, Methods Enzymol. 211:353–388.CrossRefPubMedGoogle Scholar
  16. Cohen-Cory, S., 2002, The developing synapse: Construction and modulation of synaptic structures and circuits, Science 298:770–776.CrossRefPubMedGoogle Scholar
  17. Cole, N.B., Smith, C.L., Sciaky, N., Terasaki, M., Edidin, M., and Lippincott-Schwartz, J., 1996, Diffusional mobility of Golgi proteins in membranes of living cells, Science 273:797–801.CrossRefPubMedGoogle Scholar
  18. Conn, P.M., ed., 1991, Electrophysiology and Microinjection, Academic Press, London.Google Scholar
  19. Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M., and Schwartz, M.A., 2002, Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI, Nat. Cell Biol. 4:232– 239.Google Scholar
  20. Elsliger, M.A., Wachter, R.M., Hanson, G.T., Kallio, K., and Remington, S.J., 1999, Structural and spectral response of green fluorescent protein variants to changes in pH, Biochemistry 38:5296–5301.CrossRefPubMedGoogle Scholar
  21. Erickson, M.G., Moon, D.L., and Yue, D.T., 2003, DsRed as a potential FRET partner with CFP and GFP, Biophys. J. 85:599–611.Google Scholar
  22. Förster, V.T., 1948a, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 6:54–75.Google Scholar
  23. Förster, T.H., 1948b, Versuche zum zwischenmolekularen Ubergang von Elektronenanregungsenergie, Naturwissenschaften 33:93–100.Google Scholar
  24. Galperin, E., Verkhusha, V.V., and Sorkin, A., 2004, Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells, Nat. Methods 1:209–217.Google Scholar
  25. Gerritsen, H.C., and de Grauw, K., 2001, One- and two-photon confocal fluorescence lifetime imaging and its applications, In: Methods in Cellular Imaging (A. Periasamy, ed.), Oxford University Press, New York, pp. 309–323.Google Scholar
  26. Gordon, G.W., Berry, G., Liang, X.H., Levine, B., and Herman, B., 1998, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy, Biophys. J. 74:2702–2713.Google Scholar
  27. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., and Tsien, R.Y., 2001, Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications, J. Biol. Chem. 276:29188–29194.CrossRefPubMedGoogle Scholar
  28. Grutzendler, J., Tsai, J., and Gan, W.B., 2003, Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes, Methods 30:79–85.CrossRefPubMedGoogle Scholar
  29. Ha, T., Ting, A.Y., Liang, J., Caldwell, B., Deniz, A.A., Chemla, D.S., Schultz, P.G., and Weiss, S., 1999, Single molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proc. Natl. Acad. Sci. USA 96:893–898.CrossRefPubMedGoogle Scholar
  30. Hahn, K., 2003, Monitoring signaling processes in living cells using biosensors, Sci. STKE 205:tr5. [DOI: 10.1126/stke.2003.205.tr5]Google Scholar
  31. Heim, R., Cubitt, A.B., and Tsien, R.Y., 1995, Improved green fluorescence, Nature, 373(6516):663–664.CrossRefPubMedGoogle Scholar
  32. Heim, R., and Tsien, R.Y., 1996, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol. 6:178–182.Google Scholar
  33. Heim, R., Prasher, D.C., and Tsien, R.Y., 1994, Wavelength mutations and posttranslational autooxidation of green fluorescent protein, Proc. Natl. Acad. Sci. USA 91:12501–12504.CrossRefPubMedGoogle Scholar
  34. Hell, S.W., 2003, Toward fluorescence nanoscopy, Nat. Biotechnol. 21:1347–1355.CrossRefGoogle Scholar
  35. Herman, B., Gordon, G., Mahajan, N., and Centonze, V.E., 2001, Measurement of fluorescence resonance energy transfer in the optical microscope, In: Methods in Cellular Imaging, (A. Periasamy, ed.), Oxford University Press, New York, pp. 257–272.Google Scholar
  36. Hirose, S.K., Kadowaki, M., Tanabe, H., Takeshima, and Iino, M., 1999, Spatiotemporal dynamics of inositol 1,4,5-triphosphate that underlines complex Ca2+ mobilization patterns, Science 248:1527–1530.CrossRefGoogle Scholar
  37. Hoppe, A., Christensen, K., and Swanson, J.A., 2002, Fluorescence resonance energy transfer-based stoichiometry in living cells, Biophys. J. 83:3652–3664.Google Scholar
  38. Hurtley, S.M., and Helmuth, L., 2003, The future looks bright, Science 300:75. Janetopoulos, C., Jin, T., and Devreotes, P., 2001, Receptor-mediated activation of heterotrimeric G-proteins in living cells, Science 291:2408– 2411.Google Scholar
  39. Jones, J.T., Myers, J.W., Ferrell, J.E., and Meyer, T., 2004, Probing the precision of the mitotic clock with a live-cell fluorescent biosensor, Nat. Biotech. 22:306–312.CrossRefGoogle Scholar
  40. Johnson, D.A., Voet, J.G., and Taylor, P., 1984, Fluorescence energy transfer between cobra a-toxin molecules bound to the acetylcholine receptor, J. Biol. Chem. 259:5717–5725.PubMedGoogle Scholar
  41. Kohen, E., Legallais, V., and Kohen, C., 1966, An introduction to microelectrophoresis and microinjection techniques in microfluorimetry, Exp. Cell Res. 41:223–226. CrossRefGoogle Scholar
  42. Kenworthy, A.K., and Edidin, M., 1998, Distribution of a glycosyl phosphatidyl inositol-anchored protein at the apical surface of MDCK cells examined at a resolution of >100Å using imaging fluorescence resonance energy transfer, J. Cell Biol. 142:69–84.CrossRefGoogle Scholar
  43. Kim, S.A., and Schwille, P., 2003, Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience, Curr. Opin. Neurobiol. 13:583–590.CrossRefPubMedGoogle Scholar
  44. Kraynov, V.S., Chamberlain, C., Bokoch, G.M., Schwartz, M.A., Slabaugh, S., and Hahn, K.M., 2000, Localized Rac activation dynamics visualized in living cells, Science 290:333–337.CrossRefPubMedGoogle Scholar
  45. Kusumi, A., Ike, H., Nakada, C., Murase, K., and Fujiwara, T., 2005, Singlemolecule tracking of membrane molecules: Plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules, Semin. Immunol. 17:3–21.Google Scholar
  46. Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A., and Matz, M.V., 2002, Diversity and evolution of the green fluorescent protein family, Proc. Natl. Acad. Sci. USA 99:4256–4261.CrossRefPubMedGoogle Scholar
  47. Lakowicz, J.R., 1999, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, pp. 367–394.Google Scholar
  48. Larson, D.R., Ma, Y.M., Vogt, V.M., and Webb, W.W., 2004, Direct measurement of Gag–Gag interaction retrovirus assembly with FRET and fluorescence correlation spectroscopy, J. Cell Biol. 162:1233–1244.CrossRefGoogle Scholar
  49. Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells, Science 300:87–91.CrossRefPubMedGoogle Scholar
  50. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., 2003, Photobleaching and photoactivation: following protein dynamics in living cells, Nat. Cell Biol. (Suppl.):S7–S14.Google Scholar
  51. Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., 2001, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol. 2:444–456.CrossRefPubMedGoogle Scholar
  52. Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H., Jares-Erijman, E.A., and Jovin, T.M., 2004, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nat. Biotechnol. 22:198–203.CrossRefGoogle Scholar
  53. Magde, D., Elson, E., and Webb, W.W., 1972, Thermodynamic fluctuations in a reacting system. Measurement by fluorescence correlation spectroscopy, Phys. Rev Lett. 29:705–708.CrossRefGoogle Scholar
  54. Majoul, I., Schmidt, T., Pomasanova, M., Boutkevich, E., Kozlov, Y., and Söling, H.D., 2002a, Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle, J. Cell Sci. 115:817–826.Google Scholar
  55. Majoul, I., Sohn, K., Wieland, F.T., Pepperkok, R., Pizza, M., Hillemann, J., and Söling, H.D., 1998, KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p, J. Cell Biol. 143:601–612.CrossRefGoogle Scholar
  56. Majoul, I., Straub, M., Hell, S.W., Duden, R., and Söling, H.D., 2001, KDELcargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET, Dev. Cell 1:139–153.Google Scholar
  57. Majoul, I., Straub, M., Duden, R., Hell, S.W., and Söling, H.D., 2002b, Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy, J. Biotechnol. 82:267–277.Google Scholar
  58. Majoul, I.V., Bastiaens, P.I., and Söling, H.D., 1996, Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: Studies with cholera toxin in Vero cells, J. Cell Biol. 133:777–789.CrossRefGoogle Scholar
  59. Mattheyses, A.L., Hoppe, A.D., and Axelrod, D., 2004, Polarized fluorescence resonance energy transfer microscopy, Biophy. J. 87:2787–2797.Google Scholar
  60. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Markelov, M.L., and Lukyanov, S.A., 1999, Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol. 17:969–973.CrossRefGoogle Scholar
  61. Meyer, T., and Teruel, M.N., 2003, Fluorescence imaging of signaling networks, Trends Cell Biol. 13:101–106.CrossRefPubMedGoogle Scholar
  62. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., 2005, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307:538–544.CrossRefPubMedGoogle Scholar
  63. Miesenbock, G., De Angelis, D.A., and Rothman, J.E., 1998, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins, Nature 394:192–195.CrossRefPubMedGoogle Scholar
  64. Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R.Y., 1999, Dynamic and quantitative Ca2+ measurements using improved chameleons, Proc. Natl. Acad. Sci. USA 96:2135–2140.CrossRefPubMedGoogle Scholar
  65. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388:882–887.CrossRefPubMedGoogle Scholar
  66. Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M., 2001, Spatio-temporal images of growth-factorinduced activation of Ras and Rap1, Nature 411:1065–1068.CrossRefPubMedGoogle Scholar
  67. Nicholl, C., 2004, Leonardo da Vinci — The flights of the mind, Allen Lane, Penguin Books Ltd., London.Google Scholar
  68. Patterson, G., Day, R., and Piston, D., 2001, Fluorescent protein spectra, J. Cell Sci. 114:837–838.Google Scholar
  69. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W., 1997, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys. J. 73:2782–2790.Google Scholar
  70. Patterson, G.H., Piston, D.W., and Barisas, B.G., 2000, Forster distances between green fluorescent protein pairs, Anal. Biochem. 284:438–440.Google Scholar
  71. Periasamy, A., Elangovan, M., Wallrabe, H., Demas, J.N., Barroso, M., Brautigan, D.L., and Day, R.N., 2001, Widefield, confocal, two-photon and lifetime resonance energy transfer imaging microscopy, In: Methods in Cellular Imaging, (A. Periasamy, ed.), Oxford University Press, New York, pp. 295–308.Google Scholar
  72. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea victoria green-fluorescent protein, Gene 111:229–233.CrossRefPubMedGoogle Scholar
  73. Presley, J.F., Ward, T.H., Pfeifer, A.C., Siggia, E.D, Phair, R.D., and Lippincott-Schwartz, J., 2002, Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport, Nature 417:187–193.CrossRefPubMedGoogle Scholar
  74. Sambrook, J., Fritsch, E.F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  75. Sato, M., Ozawa, T., Inukai, K., Asano, T., and Umezawa, Y., 2002, Fluorescent indicators for imaging protein phosphorylation in single living cells, Nat. Biotechnol. 20:287–294.CrossRefGoogle Scholar
  76. Sato, M., Ueda, Y., Takagi, T., and Umezawa, Y., 2003, Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis, Nat. Cell Biol. 5:1016–1022.Google Scholar
  77. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y., 2004, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nat. Biotechnol. 22:1567–1572.CrossRefPubMedGoogle Scholar
  78. Stephens, D.J., and Allan, V.J., 2003, Light microscopy techniques for live cell imaging, Science 300:82–86.CrossRefPubMedGoogle Scholar
  79. Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47:819–846.CrossRefPubMedGoogle Scholar
  80. Stryer, L., and Haugland, R.P., 1967, Energy transfer: A spectroscopic ruler, Proc. Natl. Acad. Sci. USA 58:719–726.CrossRefPubMedGoogle Scholar
  81. Ting, A.Y., Kain, K.H., Klemke, R.L., and Tsien, R.Y., 2001, Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells, Proc. Natl. Acad. Sci. USA 98:15003–15008.CrossRefPubMedGoogle Scholar
  82. Tron, L., Szollosi, J., Damjanovich, S., Helliwell, S.H., Arndt-Jovin, D.J., and Jovin, T.M., 1984, Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis, Biophys. J. 45:939–946.CrossRefPubMedGoogle Scholar
  83. Tsien, R.Y., 1998, The green fluorescent protein, Annu. Rev. Biochem 67:509–544.CrossRefPubMedGoogle Scholar
  84. Tsien, R.Y., 2004, Building and breeding molecules to spy on cells and tumors, FEBS Lett. 579:927–932.CrossRefGoogle Scholar
  85. Umezawa, Y., 2005, Genetically encoded optical probes for imaging cellular signalling pathways, Biosens. Bioelectron. 20:2504–2511.CrossRefGoogle Scholar
  86. Velez, M., and Axelrod, D., 1988, Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes, Biophys J. 53:575–591.CrossRefPubMedGoogle Scholar
  87. Violin, J.D., Zhang, J., Tsien, R.Y., and Newton, A.C., 2003, A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C, J. Cell Biol. 161:899–909.CrossRefGoogle Scholar
  88. Wakayama, S., Cibelli, J.B., and Wakayama, T., 2003, Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos, Cloning Stem Cells 5:181–189.CrossRefPubMedGoogle Scholar
  89. Ward, W.W., Prentice, H.J., Roth, A.F., Cody, C.W., and Reeves, S.C., 1982, Spectral perturbations of the Aequorea green fluorescent protein, Photochem. Photobiol. 35:803–808.CrossRefGoogle Scholar
  90. Weijer, C.J., 2003, Visualizing signals moving in cells, Science 300:96–100.CrossRefPubMedGoogle Scholar
  91. Wouters, F.S., Verveer, P.J., and Bastiaens, P.I., 2001, Imaging biochemistry inside cells, Trends Cell Biol. 11:203–211.CrossRefPubMedGoogle Scholar
  92. Wu, X., 2003, Multicolor labeling of cells using QdotTM streptavidin conjugates, Quantum Dot Vision 1:10–11.Google Scholar
  93. Zal, T., and Gascoigne, N.R.J., 2004, Photobleaching-corrected FRET efficiency imaging of live cells, Biophys. J. 86:3923–3939.Google Scholar
  94. Zhang, J., Ma, Y., Taylor, S.S., and Tsien, R.Y., 2001, Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering, Proc. Natl. Acad. Sci. USA 98:14997–15002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Irina Majoul
    • 1
  • Yiwei Jia
    • 1
  • Rainer Duden
    • 2
  1. 1.Royal Holloway University of LondonEghamUnited Kingdom
  2. 2.Olympus America Inc.MelvilleNew York

Personalised recommendations