Special Optical Elements

  • Jens Rietdorf
  • Ernst H. K. Stelzer

Abstract

The amazing array of microscopic instrumentation for generating three-dimensional images of biological specimens that are described elsewhere in this volume rely on a relatively small number of optical and mechanical components. Although most biologists have a general idea of their function and how to operate them, some mysteries remain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aylward, R.P., 1999, The advances and technologies of galvanometer-based optical scanners, SPIE Int. Soc. Opt. Eng. 3787:158–164.Google Scholar
  2. Aylward, R.P., 2003, Advanced galvanometer-based optical scanner design, Sensor Rev. 23:216–222.CrossRefGoogle Scholar
  3. Birk, H., Engelhardt, J., Storz, R., Hartmann, N., Bradl, J., and Ulrich, H., 2002, Programmable beam-splitter for confocal laser scanning microscopy, SPIE Proc. 4621:16–27.CrossRefGoogle Scholar
  4. Callamaras, N., and Parker, I., 1999, Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium, 26:271–279.CrossRefPubMedGoogle Scholar
  5. Chang, I.C., 1995, Acousto-optic devices and applications. In: Handbook of Optics, Vol. II (M. Bass, ed.), McGraw-Hill, New York, pp. 12.1–12.54.Google Scholar
  6. Cox, G., 2002, Biological confocal microscopy, Mater. Today, March:34–41.Google Scholar
  7. Draaijer, A., and Houpt, P. M., 1988, A standard video-rate confocal laserscanning reflection and fluorescence microscope, Scanning 10:139–145.Google Scholar
  8. Draaijer, A., Gerritsen, H.C., and Sanders, R., 1996, Time-domain confocal fluorescence lifetime imaging. Instrumentation, Scanning 18:56–57.Google Scholar
  9. Engelhardt, J., Ulrich, H., and Bradl, J., 1999, Optische Anordnung. German patent application DE 199 06 757 A1.Google Scholar
  10. Flamion, B., Bungay, P.M., Gibson, C.C., and Spring, K.R., 1991, Flow-rate measurements in isolated perfused kidney-tubules by fluorescence photobleaching recovery, Biophys. J. 60:1229–1242.CrossRefPubMedGoogle Scholar
  11. Harris, S.E., and Wallace, R.W., 1969, Acousto-optic tunable filter, J. Opt. Soc. Am. 59:744–747.CrossRefGoogle Scholar
  12. Helm, J.P., Haug, F.M.S., Storm, J.F., and Ottersen, O.P., 2001, Design and installation of a multimode microscopy system, SPIE Proc. 4262:396–406.CrossRefGoogle Scholar
  13. Hofkens, J., Verheijen, W., Shukla, R., Dehaen, W., and De Schryver, F.C., 1998, Detection of a single dendrimer macromolecule with a fluorescent dihydropyrrolopurroledione (DPP) core embedded in a thin polystyrene polymer film, Macromolecules 31:4493–4497.CrossRefGoogle Scholar
  14. Kramer, J., 1999, The right filter set gets the most out of a microscope, Biophotonics Intl. 6:54–58.Google Scholar
  15. Lechleiter, J.D., Lin, D.T., and Sieneart, I., 2002, Multi-photon laser scanning microscopy using an acoustic optical deflector, Biophys. J. 83:2292–2299.CrossRefPubMedGoogle Scholar
  16. Lerner J.L., and Zucker, R.M., 2004, Calibration and validation of confocal spectroscopic imaging systems, Cytometry 62A:8–34.CrossRefGoogle Scholar
  17. Lewis, E.N., Treado, P.J., and Levin, I.W., 1992, Visible/near-infrared imaging spectrometry — applications of an acousto-optic tunable filter (AOTF) to biological microscopy, FASEB J. 6: A34.Google Scholar
  18. Maldonado, T.A., 1995, Electro-optic modulators. In: Handbook of Optics, Vol. II (M. Bass, ed.), McGraw-Hill, New York, pp. 13.1–13.35.Google Scholar
  19. Melles Griot, 1999, The Practical Application of Light, Melles Griot, Irvine, CA. The Melles Griot catalogue is very informative and contains numerous excellent comments on optical elements and performance characteristics.Google Scholar
  20. Molecular Probes, 2002, Handbook of Fluorescent Probes and Research Products, Molecular Probes, Eugene, Oregon.Google Scholar
  21. Nitschke, R., Wilhelm, S., Borlinghaus, R., Leipziger, J., Bindels, R., and Greger, R., 1997, A modified confocal laser scanning microscope allows fast ultraviolet ratio imaging of intracellular Ca2+ activity using Fura-2, Pflug. Arch. Eur. J. Phy. 433:653–663.CrossRefGoogle Scholar
  22. Pawley, J.B., Amos, W.B., Dixon, A., and Brelje, T.C., 1993, Simultaneous, non-interfering, collection of optimal fluorescent and backscattered light signals on the MRC-500/600, Proc. Microsc. Soc. Am. 51:156–157.Google Scholar
  23. Reichman, J., 2000, Handbook of Optical Filters for Fluorescence Microscopy, Chroma Technology Corp., Brattleboro, Vermont.Google Scholar
  24. Tsien, R.Y., and Bacskai, B.J., 1995, Video-rate confocal microscopy. In: Handbook of Biological Confocal Microscopy, 2nd ed., (J.B. Pawley, ed.), Plenum Press, New York.Google Scholar
  25. van der Voort, H.T.M., and Brakenhoff, G.J., 1989, Modeling of 3D confocal imaging at high numerical aperture in fluorescence, SPIE Proc. 1028:39–44.Google Scholar
  26. Wachman, E.S., Niu, W., and Farkas, D.L., 1997, AOTF microscope for imaging with increased speed and spectral versatility, Biophys. J. 73:1215–1222.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jens Rietdorf
    • 1
  • Ernst H. K. Stelzer
    • 1
  1. 1.European Molecular Biology Laboratory (EMBL)Advanced Light Microscopy Facility and Light Microscopy GroupHeidelbergGermany

Personalised recommendations