Practical Considerations in the Selection and Application of Fluorescent Probes

  • Iain D. Johnson

Abstract

Due to its sensitivity, multiplexing capacity, and applicability to live specimens, fluorescence is the dominant contrast mechanism used in three-dimensional (3D) biological microscopy. Use of fluorescence detection generally requires specimens to be labeled with extrinsic probes. This is because most biological molecules and structures of interest are not intrinsically fluorescent in spectral ranges that are useful for detection, and even those that are cannot usually be discriminated from each other on the basis of their intrinsic fluorescence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamczyk, M., Mattingly, P.G., Shreder, K., and Yu, Z., 1999, Surface plasmon resonance (SPR) as a tool for antibody conjugate analysis, Bioconjug. Chem. 10:1032–1037.Google Scholar
  2. Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., and Tsien, R.Y., 2002, New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications, J. Am. Chem. Soc. 124:6063–6076.PubMedGoogle Scholar
  3. Adler, H.I., 1990, The use of microbial membranes to achieve anaerobiosis, Crit. Rev. Biotechnol. 10:119–127.PubMedGoogle Scholar
  4. Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., and Waggoner, A.S., 2004, Noninvasive imaging of quantum dots in mice, Bioconjug. Chem. 15:79–86.Google Scholar
  5. Beghetto, C., Renken, C., Eriksson, O., Jori, G., Bernardi, P., and Ricchelli, F., 2000, Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies, Eur. J. Biochem. 267:5585–5592.PubMedGoogle Scholar
  6. Berlier, J.E., Rothe, A., Buller, G., Bradford, J., Gray, D.R., Filanowski, B.J., Telford, W.G., Yue, S., Liu, J., Cheung, C.Y., Chang, W., Hirsch, J.D., Beechem, J.M., Haugland, R.P., and Haugland, R.P., 2003, Quantitative comparison of long-wavelength AlexaFluor dyes to Cy dyes: Fluorescence of the dyes and their conjugates, J. Histochem. Cytochem. 51:1699–1712.PubMedGoogle Scholar
  7. Berrios, M., Conlon, K.A., and Colflesh, D.E., 1999, Antifading agents for confocal fluorescence microscopy, Methods Enzymol. 307:55–79.PubMedGoogle Scholar
  8. Beste, G., Schmidt, F.S., Stibora, T., and Skerra, A., 1999, Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold, Proc. Natl. Acad. Sci. USA 96: 1898–1903.PubMedGoogle Scholar
  9. Bestvater, F., Spiess, E., Stobrawa, G., Hacker, M., Feurer, T., Porwol, T., Berchner-Pfannschmidt, U., Wotzlaw, C., and Acker, H., 2002, Twophoton fluorescence absorption and emission spectra of dyes relevant for cell imaging, J. Microsc. 208:108–115.Google Scholar
  10. Billinton, N., and Knight, A.W., 2001, Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence, Anal. Biochem. 291:175–197.Google Scholar
  11. Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.PubMedGoogle Scholar
  12. Breen, C.M., Sykes, D.B., Baehr, C., Fricker, G., and Miller, D.S., 2004, Fluorescein-methotrexate transport in rat choroid plexus analyzed using confocal microscopy, Am. J. Physiol. 287:F562–F569.Google Scholar
  13. Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 2002, Multicolor laser scanning confocal immunofluorescence microscopy: Practical application and limitations, Methods Cell Biol. 70:165–244.PubMedGoogle Scholar
  14. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., 1998, Semiconductor nanocrystals as fluorescent biological labels, Science 281:2013–2016.PubMedGoogle Scholar
  15. Bunting, J.R., 1992, A test of the singlet oxygen mechanism of cationic dye photosensitization of mitochondrial damage, Photochem. Photobiol. 55: 81–87.Google Scholar
  16. Byers, G.W., Gross, S., and Henrichs, P.M., 1976, Direct and sensitized photooxidation of cyanine dyes, Photochem. Photobiol. 23:37–43.Google Scholar
  17. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y., 2002, A monomeric red fluorescent protein, Proc. Natl. Acad. Sci. USA 99:7877–7882.PubMedGoogle Scholar
  18. Cao, F., Eckert, R., Elfgang, C., Nitsche, J.M., Snyder, S.A., Hulser, D.F., Willecke, K., and Nicholson, B.J., 1998, A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes, J. Cell Sci. 111:31–43.Google Scholar
  19. Chakrabarti, R., Pfeiffer, N.E., Wylie, D.E., and Schuster, S.M., 1989, Incorporation of monoclonal antibodies into cells by osmotic permeabilization: effect on cellular metabolism, J. Biol. Chem. 264:8214–8221.PubMedGoogle Scholar
  20. Chalfie, M., and Kain, S., eds., 1998, Green Fluorescent Protein: Properties, Applications and Protocols, Wiley-Liss, New York.Google Scholar
  21. Chan, W.C., and Nie, S., 1998, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281:2016–2018.PubMedGoogle Scholar
  22. Charpilienne, A., Nejmeddine, M., Berois, M., Parez, N., Neumann, E., Hewat, E., Trugnan, G., and Cohen, J., 2001, Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells, J. Biol. Chem. 276:29361–29367.PubMedGoogle Scholar
  23. Coralli, C., Cemazar, M., Kanthou, C., Tozer, G.M., and Dachs, G.U., 2001, Limitations of the reporter green fluorescent protein under simulated tumor conditions, Cancer Res 61:4784–4790.PubMedGoogle Scholar
  24. Croce, A.C., Spano, A., Locatelli, D., Barni, S., Sciola, L., and Bottiroli, G., 1999, Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol. 69:364–374.PubMedGoogle Scholar
  25. DaCosta, R.S., Andersson, H., and Wilson, B.C., 2003, Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy, Photochem. Photobiol. 78:384–392.Google Scholar
  26. Daly, C., and McGrath, J.C., 2003, Fluorescent ligands, antibodies and preoteins for the study of receptors, Pharmacol. Ther. 100:101–118.Google Scholar
  27. De Clerck, L.S., Bridts, C.H., Mertens, A.M., Moens, M.M., and Stevens, W.J., 1994, Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function, J. Immunol. Methods 172:115–124.PubMedGoogle Scholar
  28. Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.PubMedGoogle Scholar
  29. Derfus, A.M., Chan, W.C.W., and Bhatia, S.N., 2004, Probing the cytotoxicity of semiconductor quantum dots, Nano. Lett. 4:11–18.Google Scholar
  30. Diaz, G., Liu, S., Isola, R., Diana, A., and Falchi, A.M., 2003, Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes, Histochem. Cell Biol. 120:319–325.Google Scholar
  31. Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., and Fraser, S.E., 2001, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy, Biotechniques 31:1272–1278.PubMedGoogle Scholar
  32. Dickinson, M.E., Simbuerger, E., Zimmermann, B., Waters, C.W., and Fraser, S.E., 2003, Multiphoton excitation spectra in biological samples, J. Biomed. Opt. 8:329–338.PubMedGoogle Scholar
  33. Dittrich, P.S., and Schwille, P., 2001, Photobleaching and stabilization of fluorophores used for single molecule analysis with one- and two-photon excitation, Appl. Phys. B 73:829–837.Google Scholar
  34. Di Virgilio, F., Steinberg T.H., and Silverstein, S.C., 1990, Inhibition of fura-2 sequestration and secretion with organic anion transport blockers, Cell Calcium 11:57–62.PubMedGoogle Scholar
  35. Doyle, K.P., Simon, R.P., Snyder, A., and Stenzel-Poore, M.P., 2003, Working with GFP in the brain. BioTechniques 34:492–494.PubMedGoogle Scholar
  36. Dundr, M., McNally, J.G., Cohen, J., and Mistelli, T., 2002, Quantitation of GFP-fusion proteins in single living cells, J. Struct. Biol. 140:92–99.PubMedGoogle Scholar
  37. Eggeling, C., Widengren, J., Rigler, R., and Seidel C.A.M., 1999, In: Applied Fluorescence in Chemistry, Biology and Medicine (W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, eds.), Springer-Verlag, Berlin, pp. 193–240.Google Scholar
  38. Eilers, J., and Konnerth, A., 2000, Dye loading with patch pipets, In: Imaging Neurons. A Laboratory Manual (R. Yuste, F. Lanni, and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 35.1–35.10.Google Scholar
  39. Endemann, G., Schechtman, D., and Mochly-Rosen, D., 2003, Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site, Anal. Biochem. 313:345–347.Google Scholar
  40. Farber, S.A., Pack, M., Ho, S.Y., Johnson, I.D., Wagner, D.S., Dosch, R., Mullins, M.C., Hendrickson, H.S., Hendrickson, E.K., and Halpern, M.E., 2001, Genetic analysis of digestive physiology using fluorescent phospholipid reporters, Science 292:1385–1388.PubMedGoogle Scholar
  41. Farinas, J., and Verkman, A.S., 1999, Receptor-mediated targeting of fluorescent probes in living cells, J. Biol. Chem. 274:7603–7606.PubMedGoogle Scholar
  42. Fink, C., Morgan, F., and Loew, L.M., 1998, Intracellular fluorescent probe concentrations by confocal microscopy, Biophys. J. 75:1648–1658.Google Scholar
  43. Fischer, P.M., Krausz, E., and Lane, D.P., 2001, Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation, Bioconj. Chem. 12:825–841.Google Scholar
  44. Fricker, M.D., and Meyer, A.J., 2001, Confocal imaging of metabolism in vivo: Pitfalls and possibilities, J. Exp. Bot. 52:631–640.PubMedGoogle Scholar
  45. Gaigalas, A.K., Wang, L., and Vogt, R.F., 2002, Frequency-domain measurement of the photodegradation process of fluorescein, Photochem. Photobiol. 76:22–28.Google Scholar
  46. Gan, B.S., Krump, E., Shrode, L.D., and Grinstein, S., 1998, Loading pyranine via purinergic recepetors or hypotonic stress for measurement of cytosolic pH by imaging, Am. J. Physiol. 275: C1158–C1166.PubMedGoogle Scholar
  47. Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yield of singlet oxygen production by xanthene derivatives, Photochem. Photobiol. 37:271–278.Google Scholar
  48. Gerhardt, G.A., and Palmer, M.R., 1987, Characterization of the techniques of pressure ejection and microiontophoresis using in vivo electrochemistry, J. Neurosci. Methods 22:147–159.PubMedGoogle Scholar
  49. Good, M.J., Hage, W.J., Mummery, C.L., De Laat, S.W., and Boonstra, J., 1992, Localization and quantification of epidermal growth factor receptors on single cells by confocal laser scanning microscopy, J. Histochem. Cytochem. 40:1353–1361.PubMedGoogle Scholar
  50. Greenbaum, L., Rothmann, C., Lavie, R., and Malik Z., 2000, Green fluorescent protein photobleaching: A model for protein damage by endogenous and exogenous singlet oxygen, Biol. Chem. 381:1251–1258.Google Scholar
  51. Grzelak, A., Rychlik, B., and Bartosz, G., 2001, Light-dependent generation of reactive oxygen species in cell culture media, Free Radic. Biol. Med. 30:1418–1425.Google Scholar
  52. Grutzendler, J., Tsai, J., and Gan, W.G., 2003, Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes, Methods 30:79–85.PubMedGoogle Scholar
  53. Gunjan, A., Alexander, B.T., Sittman, D.B., and Brown, D.T., 1999, Effects of H1 histone variant overexpression on chromatin structure, J. Biol. Chem. 274:37950–37956.PubMedGoogle Scholar
  54. Haas, K., Sin, W.-C., Javaherian, A., Li, Z., and Cline, H.T., 2001, Single-cell electroporation for gene transfer in vivo, Neuron 29:583–591.PubMedGoogle Scholar
  55. Hara, M., Wang, X., Kawamura, T., Bindokas, V.P., Dizon, R.F, Alcoser, S.Y., Magnuson, M.A., and Bell, G.I., 2003, Transgenic mice with green fluorescent protein–labeled pancreatic b-cells, Am. J. Physiol. 284:E1177–E1183.Google Scholar
  56. Haralampus-Grynaviski, N.M., Lamb, L.E., Clancy, C.M., Skumatz, C., Burke, J.M., Sarna, T., and Simon, J.D., 2003, Spectroscopic and morphological studies of human retinal lipofuscin granules, Proc. Natl. Acad. Sci. USA 100:3179–3184.PubMedGoogle Scholar
  57. Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S., 1997, Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA 94:2122–2127.PubMedGoogle Scholar
  58. Hashimoto, K., Tatsumi, N., and Okada, K., 1989, Introduction of phalloidin labelled with fluorescein isothiocyanate into living polymorphonuclear leukocytes by electroporation, J. Biochem. Biophys. Methods 19:143–154.PubMedGoogle Scholar
  59. Haugland, R.P., 2002, Handbook of Fluorescent Probes and Research Products, Ninth Edition, Molecular Probes, Inc., Eugene, Oregon.Google Scholar
  60. Helmchen, F., 2002, Miniaturization of fluorescence microscopes using fibre optics, Exp. Physiol. 87:737–745.Google Scholar
  61. Hermanson, G.P., 1996, Bioconjugate Techniques, Academic Press, San Diego, California.Google Scholar
  62. Hollo, Z., Homolya, L., Davis, C.W., and Sarkadi, B., 1994, Calcein accumulation as a fluorometric functional assay of the multidrug transporter, Biochim. Biophys. Acta 1191:384–388.PubMedGoogle Scholar
  63. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M., 2003, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21:47–52.Google Scholar
  64. Jales-Erijman, E.A., and Jovin, T.M., 2003, FRET imaging, Nat. Biotechnol. 21:1387–1395.Google Scholar
  65. Kanofsky, J.R., and Sima P.D., 2000, Structural and environmental requirements for quenching of singlet oxygen by cyanine dyes, Photochem. Photobiol. 71:361–368.Google Scholar
  66. Katz, B.Z., Krylov, D., Aota, S.I., Olive, M., Vinson, C., and Yamada, K.M., 1998, Green fluorescent protein labeling of cytoskeletal structures —Novel targeting approach based on leucine zippers, BioTechniques 25: 298–304.PubMedGoogle Scholar
  67. Knight, M.M., Roberts, S.R., Lee, D.A., and Bader, D.L., 2003, Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death, Am. J. Physiol. 284:C1083–C1089.Google Scholar
  68. Koester, H.J., Baur, D., Uhl, R., and Hell, S.W., 1999, Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage, Biophys. J. 77:2226–2236.Google Scholar
  69. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., and Webb, W.W., 2003, Water soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 300:1434–1436.PubMedGoogle Scholar
  70. Lee, C., Wu, S.S., and Chen, L.B., 1995, Photosensitization by 3,3¢- dihexyloxacarbocyanine iodide: Specific disruption of microtubules and inactivation of organelle motility, Cancer Res. 55:2063–2069.Google Scholar
  71. Lemasters, J.J., Trollinger, D.R., Qian, T., Cascio, W.E., and Ohata, H., 1999, Confocal imaging of Ca2+, pH, electrical potential and membrane permeability in single living cells, Methods Enzymol. 302:341–358.Google Scholar
  72. Lim, M.L., Lum, M.G., Hansen, T.M., Roucou, X., and Nagley, P., 2002, On the release of cytochrome c from mitochondria during cell death signaling, J. Biomed. Sci. 9:488–506.PubMedGoogle Scholar
  73. Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells, Science 300:87–91.PubMedGoogle Scholar
  74. Loetchutinat, C., Saengkhae, C., Marbeuf-Gueye, C., and Garnier-Suillerot, A., 2003, New insights into the P-glycoprotein-mediated effluxes of rhodamines, Eur. J. Biochem. 270:476–485.PubMedGoogle Scholar
  75. Lombry, C., Bosquillon, C., Preat, V., and Vanbever, R., 2002, Confocal imaging of rat lungs following intratracheal delivery of dry powders or solutions of fluorescent probes, J. Controlled Release 83:331–341.Google Scholar
  76. Lu, J., and Zenobi, R., 2000, In-situ monitoring of protein labeling reactions by matrix-assisted laser desorption/ionization mass spectrometry, Fresnius J. Anal. Chem. 366:3–9.Google Scholar
  77. Manders, E.M., Kimura, H., and Cook, P.R., 1999, Direct imaging of DNA in living cells reveals the dynamics of chromosome formation, J. Cell Biol. 144:813–821.Google Scholar
  78. Manders, E., Van Oven, C., and Hoebe, R., 2004, Phototoxicity in live-cell imaging and an effective way to reduce it: Controlled light exposure microscopy (CLEM), In: Abstracts of Focus on Microscopy 2004 Meeting.Google Scholar
  79. Marrero, M.B., Schieffer, B., Paxton, W.G., Schieffer, E., and Bernstein, K.E., 1995, Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-g1 in rat aortic smooth muscle cells, J. Biol. Chem. 270:15734–15738.PubMedGoogle Scholar
  80. Martin, C., Walker, J., Rothnie, A., and Callaghan, R., 2003, The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models, Br. J. Cancer 89:1581–1589.PubMedGoogle Scholar
  81. Mattheakis, L.C., Dias, J.M., Choi, Y.J., Gong, J., Bruchez, M.P., Liu, J., and Wang, E., 2004, Optical coding of mammalian cells using semiconductor quantum dots, Anal. Biochem. 327:200–208.Google Scholar
  82. Matz M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A., 1999, Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol. 17:969–973.Google Scholar
  83. Mercola, D.A., Morris, J.W.S., and Arquilla, E.R., 1972, Use of resonance interaction in the study of the chain folding of insulin in solution, Biochemistry 11:3860–3874.PubMedGoogle Scholar
  84. Meyers, J.R., MacDonald, R.B., Duggan, A., Lenzi, D., Standaert, D.G., Corwin, J.T., and Corey, D.P., 2003, Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels, J. Neurosci. 23:4054–4065.Google Scholar
  85. Mook, O.R., Van Overbeek C., Ackema, E.G., Van Maldegem, F., and Frederiks, W.M., 2003, In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin, J. Histochem. Cytochem. 51:821–829.PubMedGoogle Scholar
  86. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., and Waggoner, A.S., 1993, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjug. Chem. 4:105–111.Google Scholar
  87. Nemetz, C., Reichhuber, R., Schweizer, R., Hloch, P., and Watzele, M., 2001, Reliable quantification of in vitro synthesized green fluorescent protein: Comparison of fluorescence activity and total protein levels, Electrophoresis 22:966–969.PubMedGoogle Scholar
  88. Nicholls, D.G., and Ward, M.W., 2000, Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts, Trends Neurosci. 23:166–174.PubMedGoogle Scholar
  89. O’Brien, J.A, Holt, M., Whiteside, G., Lummis, S.C., and Hastings, M.H., 2001, Improvements to the hand-held Gene Gun: Improvements for in vitro biolistic transfection of organotypic neuronal tissue, J. Neurosci. Methods 112:57–64.PubMedGoogle Scholar
  90. Oh, D.J., Lee, G.M., Francis, K., and Palsson, B.O., 1999, Phototoxicity of the fluorescent membrane dyes PKH2 and PKH26 on the human hematopoietic KG1a progenitor cell line, Cytometry 36:312–318.PubMedGoogle Scholar
  91. Ouedraogo, G.D., and Redmond, R.W., 2003, Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization, Photochem. Photobiol. 77:192–203.Google Scholar
  92. Pagano, R.E., Watanabe, R., Wheatley, C., and Dominguez, M., 2000, Applications of BOPIDY-sphingolipid analogs to study lipid traffic and metabolism in cells, Methods Enzymol. 312:523–534.PubMedGoogle Scholar
  93. Panchuk-Voloshina, N., Haugland, R.P., Bishop-Stewart, J., Bhalgat, M.K., Millard, P.J., Mao, F., Leung, W.-Y., and Haugland, R.P., 1999, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem. 47:1179–1188.PubMedGoogle Scholar
  94. Parish, C.R., 1999, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunol. Cell Biol. 77:499–508.Google Scholar
  95. Passamonti, S., and Sottocasa, G., 1988, The quinoid structure is the molecular requirement for recognition of phthaleins by the organic anion carrier at the sinusoidal plasma membrane level in the liver, Biochim. Biophys. Acta 943:119–125.PubMedGoogle Scholar
  96. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W., 1997, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys. J. 73:2782–2790.Google Scholar
  97. Patterson, G.H., and Piston, D.W., 2000, Photobleaching in two-photon excitation microscopy, Biophys. J. 78:2159–2162.Google Scholar
  98. Potocky, T.B., Menon, A.K., and Gellman, S.H., 2003, Cytoplasmic and nuclear delivery of a TAT-derived peptide and a b-peptide after endocytic uptake into HeLa cells, J. Biol. Chem. 278:50188–50194.PubMedGoogle Scholar
  99. Pu, R., Wozniak, M., and Robinson, K.R., 2000, Cortical actin filaments form rapidly during photopolarization and are required for the development of calcium gradients in Pelvetia compressa zygotes, Dev. Biol. 222:440–449.Google Scholar
  100. Ramjeesingh, M., Zywulko, M., Rothstein, A., Whyte, R., and Shami, E.Y., 1990, Antigen protection of monoclonal antibodies undergoing labeling, J. Immunol. Methods 133:159–167.PubMedGoogle Scholar
  101. Rocheleau, J.V., Head, W.S., and Piston, D.W., 2004, Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response, J. Biol. Chem. 279: 31780–31787PubMedGoogle Scholar
  102. Roederer, M., and Murphy, R.F., 1986, Cell-by-cell autofluorescence correction for low signal-to-noise systems: Application to epidermal growth factor endocytosis by 3T3 fibroblasts, Cytometry 7:558–565.PubMedGoogle Scholar
  103. Rose, C.R., Kovalchuk, Y., Eilers, J., and Konnerth, A., 1999, Two-photon Na+ imaging in spines and fine dendrites of central neurons, Pflügers Arch. 439:201–207.PubMedGoogle Scholar
  104. Rottenberg, H., and Wu, S., 1998, Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells, Biochim. Biophys. Acta 1404:393–404.PubMedGoogle Scholar
  105. Rubart, M., Wang, E., Dunn, K.W., and Field, L.J., 2003, Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts, Am. J. Physiol. Cell Physiol. 284:C1654–C1668.PubMedGoogle Scholar
  106. Ruthazer, E.S., and Cline, H.T., 2002, Multiphoton imaging of neurons in living tissue: Acquisition and analysis of time-lapse morphological data, Real-Time Imaging 8:175–188.Google Scholar
  107. Schafer, F.Q., and Buettner, G.R., 1999, Singlet oxygen toxicity is cell linedependent: a study of lipid peroxidation in nine leukemia cell lines, Photochem. Photobiol. 70:858–867.Google Scholar
  108. Scorrano, L., Petronilli, V., Colonna, R., Di Lisa, F., and Bernardi, P., 1999, Chloromethyltetramethylrosamine (Mitotracker Orange) induces the mitochondrial permeability transition and inhibits respiratory complex I, J. Biol. Chem. 274:24657–24663.PubMedGoogle Scholar
  109. Song, L., Hennink, E.J., Young, I.T., and Tanke, H.J., 1995, Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy, Biophys. J. 68:2588–2600.Google Scholar
  110. Song, L., Varma, C.A., Verhoeven, J.W., and Tanke, H.J., 1996, Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy, Biophys. J. 70:2959–2968.Google Scholar
  111. Song, L., van Gijlswijk, R.P., Young, I.T., and Tanke, H.J., 1997, Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy, Cytometry 27:213–223.PubMedGoogle Scholar
  112. Stephens, D.G., and Pepperkok, R., 2001, The many ways to cross the plasma membrane, Proc. Natl. Acad. Sci. USA 98:4295–4298.PubMedGoogle Scholar
  113. Stoien, J.D., and Wang, R.J., 1974, Effect of near-ultraviolet and visible light on mammalian cells in culture II. Formation of toxic photoproducts in tissue culture medium by blacklight, Proc. Natl. Acad. Sci. USA 71:3961–3965.Google Scholar
  114. Storms, M.M.H., Van der Schoot, C., Prins, M., Kormelink, R., Van Lent, J.W.M., and Goldbach, R.W., 1998, A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins, Plant J. 13:131–140.Google Scholar
  115. Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A., 2003, In vivo two-photon calcium imaging of neuronal networks, Proc. Natl. Acad. Sci. USA 100:7319–7324.PubMedGoogle Scholar
  116. Stracke, F., Heupel, M., and Thiel, E., 1999, Singlet molecular oxygen photosensitized by rhodamine dyes: Correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol. A 126:51–58.Google Scholar
  117. Stracke, F., Heupel, M., and Thiel, E., 1999, Singlet molecular oxygen photosensitized by rhodamine dyes: Correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol. A 126:51–58.Google Scholar
  118. Sullivan, K.F., and Kay, S.A., eds., 1999, Green Fluorescent Proteins, Academic Press, San Diego, California.Google Scholar
  119. Takahashi, N., Nemoto, T., Kimura, R., Tachikawa, A., Miwa, A., Okado, H., Miyashita, Y., Iino, M., Kadowaki, T., and Kasai, H., 2002, Two-photon excitation imaging of pancreatic islets with various fluorescent probes, Diabetes 51:S25–S28.PubMedGoogle Scholar
  120. Tanhuanpaa, K., and Somerharju, P., 1999, Gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies, J. Biol. Chem. 274:35359–35366.PubMedGoogle Scholar
  121. Tirlapur, U.K., Konig, K., Peuckert, C., Krieg, R., and Halbhuber, K.J., 2001, Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death, Exp. Cell Res. 263:88–97.Google Scholar
  122. Tooley, A.J., Cai, Y.A., and Glazer, A.N., 2001, Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host, Proc. Natl. Acad. Sci. USA 98:10560–10565.PubMedGoogle Scholar
  123. Tsien, R.Y., 1998, The green fluorescent protein, Ann. Rev. Biochem. 67:509–544.PubMedGoogle Scholar
  124. Unkila, M., McColl, K.S., Thomenius, M.J., Heiskanen, K., and Distelhorst, C.W., 2001, Unreliability of the cytochrome c-enhanced green fluorescent fusion protein as a marker of cytochrome c release in cells that overexpress Bcl-2, J. Biol. Chem. 276:39132–39137.PubMedGoogle Scholar
  125. Vigers, G.P., Coue, M., and McIntosh, J.R., 1988, Fluorescent microtubules break up under illumination, J. Cell Biol. 107:1011–1024.Google Scholar
  126. Wadkins, R.M., and Houghton, P.J., 1995, Kinetics of transport of dialkyloxacarbocyanines in multidrug-resistant cell lines overexpressing Pglycoprotein: Interrelationship of dye alkyl chain length, cellular flux, and drug resistance, Biochemistry 34:3858–3872.PubMedGoogle Scholar
  127. Waizenegger, T., Fischer, R., and Brock, R., 2002, Intracellular concentration measurement in adherent cells: Acomparison of import efficiencies of cellpermeable peptides, Biol. Chem. 383:291–299.Google Scholar
  128. Walev, I., Bhakdi, S.C., Hofmann, F., Djonder, N., Valeva, A., Aktories, K., and Bhakdi, S., 2001, Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin O, Proc. Natl. Acad. Sci. USA 98:3185–3190.PubMedGoogle Scholar
  129. Wang, G., Achim, C.L., Hamilton, R.L., Wiley, C.A., and Soontornniyomkij, V., 1999, Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy, Methods 18:459–464.PubMedGoogle Scholar
  130. Watson, A., Wu, X., and Bruchez, M., 2003, Lighting up cells with quantum dots, BioTechniques 34:296–303.PubMedGoogle Scholar
  131. Wendland, M., and Bumann, D., 2002, Optimization of GFP levels for analyzing Salmonella gene expression during an infection, FEBS Lett. 521:105–108.PubMedGoogle Scholar
  132. White, S.M, Constantin, P.E., and Claycomb, W.C., 2004, Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function, Am. J. Physiol. 286:H823–H829.Google Scholar
  133. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P., 2003, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 21:41–46.Google Scholar
  134. Xu, C., and Webb, W.W., 1996, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B 13:481–491.Google Scholar
  135. Xu, C., Zipfel, W., Shear, J.B., Williams, R.M., and Webb, W.W., 1996, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93:10763–10768.PubMedGoogle Scholar
  136. Yasuda, K., Momose, T., and Takahashi, Y., 2000, Applications of microelectroporation for studies of chick embryogenesis, Dev. Growth Differ. 42:203–206.Google Scholar
  137. Zipfel, W., Williams, R.M., and Webb, W.W., 2003a, Nonlinear magic: Multiphoton microscopy in the biosciences, Nat. Biotechol. 21:1369–1377.Google Scholar
  138. Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T., and Webb, W.W., 2003b, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proc. Natl. Acad. Sci. USA 100:7075–7080.PubMedGoogle Scholar
  139. Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y., 2002, Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol. 3:906–918.PubMedGoogle Scholar
  140. Zhang, X., and Kiechle, F.L., 2003, Hoechst 33342 alters luciferase gene expression in transfected BC3H-1 myocytes, Arch. Pathol. Lab. Med. 127:1124–1132.PubMedGoogle Scholar
  141. Zhao, M., Hollingworth, S., and Baylor, S.M., 1997, AM-loading of fluorescent Ca2+ indicators into intact fibers of frog muscle, Biophys. J. 72:2736–2747.Google Scholar
  142. Siegel, R.M., Chan, F.K., Zacharias, D.A., Swofford, R., Holmes, K.L., Tsien, R.Y., and Lenardo, M.J., 2000, Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein, Science Signal Transduction Knowledge Environment, available at http://stke.sciencemag.org/cgi/content/full/ OC_sigtrans;2000/38/pl1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Iain D. Johnson
    • 1
  1. 1.Molecular Probes, Inc.EugeneUSA

Personalised recommendations