MRBF: A Method for Predicting HIV-1 Drug Resistance

  • Anantaporn Srisawat
  • Boonserm Kijsirikul
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 228)


This paper presents the MRBF network, a new algorithm adapted from the RBF network, to construct the classifiers for predicting phenotypic resistance on 6 protease inhibitors. The performance of the prediction was measured by 10-fold cross-validation, The results show that MRBF gives the lowest average mean square error (MSE) when compared with the traditional RBF network and multiple linear regression analysis (REG). Moreover, it provides the best average predictive accuracy when compared with HIVdb, REG, and Support Vector Machines (SVM).

Key words

RBF Network RReliefF predicting HIV-1 drug resistance 


  1. 1.
    J.M. Coffin, “HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy”, Science, vol. 267, 1995, pp. 483–489.CrossRefGoogle Scholar
  2. 2.
    L. Demeter, R. Haubrich, “Phenotypic and genotypic resistance assays: methodology, reliability, and interpretations”, Journal of Acquired Immune Deficiency Syndromes, vol. 26, 2001, pp. S3–S9.CrossRefGoogle Scholar
  3. 3.
    M. Robnik Sikonja and I. Kononenko, “An adaptation of relief for attribute estimation in regression”, Machine Learning: Proceedings of the Fourteenth International Conference (ICML’ 97), 1997, pp. 296–304.Google Scholar
  4. 4.
    R.W. Shafer, D.R. Jung, B.J. Betts, “Human immunodeficiency virus type 1 reverse transcriptase and protease mutation search engine for queries”, NAT Med, vol. 6, 2000, pp. 1290–1292.CrossRefGoogle Scholar
  5. 5.
    JL. Meynard, M. Vray, L. Morand-Joubert, et al, “Phenotypic or genotypic resistance testing for choosing antiretroviral therapy after treatment failure: a randomized trial”, AIDS, vol. 16, 2002, pp. 727–736.CrossRefGoogle Scholar
  6. 6.
    K. Van Laethem, A. Ke Luca, A, Antinori, et al. “A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1 infected patients”, Antiviral Ther, vol. 7, 2002, pp. 123–129.Google Scholar
  7. 7.
    C. Reid, R. Bassett, S. Day, et al, “A dynamic rules-based interpretation system derived by an expert panel is predictive of virological failure”, Antiviral Ther, vol. 7, 2002, pp. s91.Google Scholar
  8. 8.
    K. Wang, E. Jenwitheesuk, R. Samudrala, J.E. Mitter, “Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance”, Antivir, Ther, vol. 9, 2004, pp. 343–352.Google Scholar
  9. 9.
    N. Beerenwinkel, B. Schmidt, H. Walter, R. Kaiser, T. Lengauer, D. Hoffmann, K. Korn, and J. Selbig, “Geno2pheno: interpreting genotypic HIV drug resistance test”, IEEE Intellig Syst, vol. 16, 2001, pp. 35–41.CrossRefGoogle Scholar
  10. 10.
    N. Beerenwinkel, B. Schmidt, H. Walter, R. Kaiser, T. Lengauer, D. Hoffmann, K. Korn, and J. Selbig, “Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to prediction phenotype from genotype”, Proceedings of Natl Acad, Sc, USA, 2002, pp. 8271–8276.Google Scholar
  11. 11.
    N. Beerenwinkel, M. Daumer, M Oette, K. Korn, D. Hoffmann, R. Kaiser, T. Lengauer, J. Selbig, and H. Walter, “Geno2Pheno: estimating phenotypic drug resistance from HIV-1 genotypes”, Nucleic Acids Research, vol. 31, 2003, pp. 3850–3855.CrossRefGoogle Scholar
  12. 12.
    D. Wang and B. Larder, “Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks”, Infectious Disease, vol. 188, 2003, pp. 653–660.CrossRefGoogle Scholar
  13. 13.
    S. Draghici and B. Potter, “Predicting HIV drug resistance with neural networks”, Bioinformatics, vol. 19, 2003, pp. 98–107.CrossRefGoogle Scholar
  14. 14.
    M. Powell, “Radial basis function for multivariable interpolation: A review”, Algorithms for approximation, 1987, pp. 143–167.Google Scholar
  15. 15.
    D. S. Broomhead and D. Lowe, “Mutivariable functional interpolation and adaptive networks”, Complex System 2, 1988, pp. 321–355.Google Scholar
  16. 16.
    J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned processing units”, Neural Computation, 1(2), 1989, pp. 281–294.CrossRefGoogle Scholar
  17. 17.
    S. Haykin, Neural Networks; A comprehensive foundation, Prentice Hall, New Jersey, 1999, pp. 256–312.zbMATHGoogle Scholar
  18. 18.
    S. W. Robert, “Genotypic Testing for Human Immunodeficiency Virus Type 1 Drag Resistance”, Clinical Microbiology Regviews, vol. 15, 2002, pp. 247–277.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • Anantaporn Srisawat
    • 1
  • Boonserm Kijsirikul
    • 1
  1. 1.Computer Engineering DepartmentChulalongkorn UniversityThailand

Personalised recommendations