Extended Semantic Network for Knowledge Representation

An Hybrid Approach
  • Reena T. N. Shetty
  • Pierre-Michel Riccio
  • Joël Quinqueton
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 228)


The proposition Extended Semantic Network is an innovative tool for Knowledge Representation and Ontology construction, which not only infers meanings but looks for sets of associations between nodes as opposed to the present method of keyword association. The objective here is to achieve semi-supervised knowledge representation technique with good accuracy and minimum human intervention. This is realized by obtaining a technical co-operation between mathematical and mind models to harvest their collective intelligence.

Key words

Extended Semantic Network Artificial Intelligence Collective Intelligence Proximal Network Semantic Network User Modeling Knowledge Knowledge Representation & Management Information Retrieval 


  1. [1]
    Naiaiya F. Noy and Deborah L. McGuinness, Ontology Development 101: A Guide to Creating Your First Ontology, Stanford University, Stanford, CA.Google Scholar
  2. [2]
    T.R. Gruber, “Toward Principle for the design of ontologies used for Knowledge Sharing”, in Proc. Of International Workshop on Formal Ontology, March 1993.Google Scholar
  3. [3]
    Briekley, D. and Guha, R.V. Resource Description Framework (RDF) Schema Specification. Proposed Recommendation: World Wide Web Consortium, 1999.Google Scholar
  4. [4]
    Helder, J. and McGuinness, D.L., The DARPA Agent Markup Language. IEEE Intelligent Systems. 2000.Google Scholar
  5. [5]
    Natalya F. Noy, Michel Sintek, Stefan Decker, onica Crubézy. Kay W. Fergerson and Mark A. Musen, Creating Semantic web Contents With protégé 2000, Stanford University, IEEE Intelligent Systems. 2001.Google Scholar
  6. [6]
    J.F Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 2000.Google Scholar
  7. [7]
    J Voss, P Danowski, B, 2005.Google Scholar
  8. [8]
    M.R Quillian, Semantic memory. M Minsky, Ed, Semantic Information Processing. pp.216–270. Cambridge, Massachusetts: MIT Press, 1968.Google Scholar
  9. [9]
    J.F Sowa, Conceptual structures: information processing in mind and machine, Addison-Wesley Longman Publishing Co., Inc. Boston. MA. 1984.zbMATHGoogle Scholar
  10. [10]
    J Brachman. L Deborah. McGuinness. F Patel-Sehneider, A Resnick Living with CLASSIC: When and How to Use a KL-ONE-Like Language, 1991.Google Scholar
  11. [11]
    Rational Corporation: UML Notation Guide 2, 2000.Google Scholar
  12. [12]
    M.E Winston, R Chaffin and D Hernnann, A taxonomy of part — Whole Relations Cognitive Science 11, 1987.Google Scholar
  13. [13]
    S.A. Mané, P.M. Riccio et S. Vailliès: des elements pour un modèle: la lutte des classes! Revue Génie Logiciel, n°58, Paris, septembre 2001.Google Scholar
  14. [14]
    M Ménager, Programme Toxicologie Nucléairc Environnementale: Comment fédérer et créer une communauté scientifique autour d’un enjue de société, Intelligence Collective Partage et Redistribution des Savoirs, Nimes, France, septembre, 2004.Google Scholar
  15. [15]
    J Aberg & N Shahmehri, User Modelling an Aid for Human Web Assistants. User Modeling 2001: 8th International Conference, UM 2001, Southaven, Germany, July 13–17, 2001.Google Scholar
  16. [16]
    E Reingold, J Nightingale, “Artificial Intelligence”.Google Scholar
  17. [17]
    Alexander maedche & Steffen Staab. “Ontology Learning for the Semantic Web”.Google Scholar
  18. [18]
    J Link-Pezet, P Glize, C Régis, A cognitive approach to intelligent databases, On line, London: Learned Information, 1992.Google Scholar
  19. [19]
    N.J Befkin, W.B Croft, Information Filtering and Information Retrieval: Two Sides of the Same Coin?, Communications of the ACM Vol. 35 no12, 1992Google Scholar
  20. [20]
    R Davis, B.G Buchanann, Meta-Level knowledge: Overview and applications, IJCAI, ACM SIGIR, no 5, Cambridge, 1984.Google Scholar
  21. [21]
    A Maedche, S Staab, Representation & Learning, IEEE Intelligent Systems, 2001.Google Scholar
  22. [22]
    E Rosen and B. Mervis, Family Resemblances: Studies in the Internal Structure of Categories, University of California. Berkeley, 1989Google Scholar
  23. [23]
    E Rosch Cognitive Representation of Semantic Categories, University of California, Berkeley, 1978Google Scholar
  24. [24]
    E Rosch “Cognitive Reference Points”, University of California, Berkeley, 1978.Google Scholar
  25. [25]
    N. Cuarino, C. Masoio, and G. Vetere, “Ontoseek: Content-based Access to the Web,” IEEE Intelligent Systems, Volume 14, no. 3. pp. 70–80, 1999CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • Reena T. N. Shetty
    • 1
    • 2
    • 3
  • Pierre-Michel Riccio
    • 1
    • 2
    • 3
  • Joël Quinqueton
    • 1
    • 2
    • 3
  1. 1.EMA ParisParis
  2. 2.LGI2P NimesNimes
  3. 3.LIRMM MontpellierMontpellier

Personalised recommendations