Principles of Secure Information Flow Analysis

  • Geoffrey Smith
Part of the Advances in Information Security book series (ADIS, volume 27)

Abstract

In today’s world of the Internet, the World-Wide Web, and Google, information is more accessible than ever before. An unfortunate corollary is that it is harder than ever to protect the privacy of sensitive information. In this chapter, we explore a technique called secure information flow analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Agat. Type Based Techniques for Covert Channel Elimination and Register Allocation.PhD thesis, Chalmers University of Technology, Goteborg, Sweden, Dec. 2000.Google Scholar
  2. 2.
    A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols: A case study. In Proceedings of the 10th European Symposium on Research in Computer Security (ESORICS 2005), pages 197–221, Sept. 2005.Google Scholar
  3. 3.
    A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a Java-like language. In Proceedings 15th IEEE Computer Security Foundations Workshop,pages 253–267, Cape Breton, Nova Scotia, Canada, June 2002.Google Scholar
  4. 4.
    G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Proceedings of TLDI’OS:2005 ACM SIGPLAN International Workshop on Types in Language Design and Implementation, pages 103–112, Jan. 2005.Google Scholar
  5. 5.
    G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems. Theoretical Computer Science, 281(1):109–130, June 2002.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Z. Deng and G. Smith. Lenient array operations for practical secure information flow. In Proceedings 17th IEEE Computer Security Foundations Workshop, pages 115–124, Pacific Grove, California, June 2004.CrossRefGoogle Scholar
  7. 7.
    Z. Deng and G. Smith. Type inference and informative error reporting for secure information flow. In Proceedings ACMSE 2006: 44th ACM Southeast Conference, pages 543–548, Melbourne, Florida, Mar. 2006.Google Scholar
  8. 8.
    D. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–242, 1976.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Denning and P. Denning. Certification of programs for secure information flow. Commun. ACM, 20(7):504–513,1977.MATHCrossRefGoogle Scholar
  10. 10.
    J. Goguen and J. Meseguer. Security policies and security models. In Proceedings 1982 IEEE Symposium on Security and Privacy, pages 11–20, Oakland, CA, 1982.Google Scholar
  11. 11.
    C. A. Gunter. Semantics of Programming Languages. The MIT Press, 1992.Google Scholar
  12. 12.
    K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process behaviour. In Proceedings 9th European Symposium on Programming, volume 1782 of Lecture Notes in Computer Science, pages 180–199, Apr. 2000.Google Scholar
  13. 13.
    P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proceedings 32nd Symposium on Principles of Programming Languages, pages 158–170, Jan. 2005.Google Scholar
  14. 14.
    J. McLean. Security models and information flow. In Proceedings 1990 IEEE Symposium on Security and Privacy, pages 180–187, Oakland, CA, 1990.Google Scholar
  15. 15.
    J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Sofware Engineering. Wiley Press, 1994.Google Scholar
  16. 16.
    A. Myers. JFlow: Practical mostly-static information flow control. In Proceedings 26th Symposium on Principles of Programming Languages, pages 228–241, San Antonio, TX, Jan. 1999.Google Scholar
  17. 17.
    A. C. Myers, S. Chong, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java + information flow. CornellUniversity, 2004. Availableat http://www.cs.cornell.edu/jif/.Google Scholar
  18. 18.
    . Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software. In Proceedings of the 12th Annual Network and Distributed System Security Symposium (NDSS 05), Feb. 2005.Google Scholar
  19. 19.
    P. Brbck. Can You Trust Your Data? In Proceedings 1995 Theory and Practice of Software Development Conference, pages 575–589, Aarhus, Denmark, May 1995. Lecture Notes in Computer Science 915.Google Scholar
  20. 20.
    E Pottier and V. Simonet. Information flow inference for ML. ACM Transactions on Programming Languages and Systems, 25(1): 117–158, Jan. 2003.CrossRefGoogle Scholar
  21. 21.
    V. Pratt and J. Tiuryn. Satisfiability of inequalities in a poset. Fundamenta Informaticae, 28(1-2):165–182, 1996.MATHMathSciNetGoogle Scholar
  22. 22.
    A. Sabelfeld and A. C. Myers. Language-based information flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19, Jan. 2003.CrossRefGoogle Scholar
  23. 23.
    A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In Proceedings 13th IEEE Computer Security Foundations Workshop, pages 200–214, Cambridge, UK, July 2000.Google Scholar
  24. 24.
    A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proceedings 18th IEEE Computer Security Foundations Workshop, June 2005.Google Scholar
  25. 25.
    V. Simonet. The Flow Cam1 System: Documentation and user’s manual. Institut National de Recherche en Informatique et en Automatique, July 2003. Available at http://cristal.inria.fr/∼simonet/soft/flowcaml/manual/index.htm1.Google Scholar
  26. 26.
    G. Smith. A new type system for secure information flow. In Proceedings 14th IEEE Computer Security Foundations Workshop, pages 115–125, Cape Breton, Nova Scotia, Canada, June 2001.CrossRefGoogle Scholar
  27. 27.
    G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Proceedings 16th IEEE Computer Security Foundations Workshop, pages 1–13, Pacific Grove, California, June 2003.Google Scholar
  28. 28.
    G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. In Proceedings 25th Symposium on Principles of Programming Languages, pages 355–364, San Diego, CA, Jan. 1998.Google Scholar
  29. 29.
    Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow inference for an object-oriented language. In Proc. Eleventh International Static Analysis Symposium (SAS), Verona, Italy, Aug. 2004.Google Scholar
  30. 30.
    D. Volpano and G. Smith. A type-based approach to program security. In Proc. Theory and Practice of Software Development, volume 1214 of Lecture Notes in Computer Science, pages 607–621, Apr. 1997.Google Scholar
  31. 31.
    D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. Journal of Computer Security, 7(2,3):231–253, 1999.Google Scholar
  32. 32.
    D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer Security, 4(2,3): 167–187,1996.Google Scholar
  33. 33.
    S. Zdancewic. Challenges for information-flow security. In Proceedings of the 1st International Workshop on Programming Language Interference and Dependence (PLID’04), 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Geoffrey Smith
    • 1
  1. 1.School of Computing and Information SciencesFlorida International UniversityFlorida

Personalised recommendations