Protein Misassembly

Macromolecular Crowding and Molecular Chaperones
  • R. John Ellis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 594)


The generic tendency of proteins to misassemble into nonfunctional, and sometimes cytotoxic, structures poses a universal problem for all types of cell. This problem is exacerbated by the high total concentration of macromolecules found within most in-tracellular compartments but it is solved by the actions of molecular chaperones. This review discusses some of the basic evidence and key concepts relating to this conclusion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anfinsen CB. Principles that govern the folding of polypeptide chains. Science 1973;181:223–230.PubMedCrossRefGoogle Scholar
  2. 2.
    Epstein CJ, Goldberg RF, Anfinsen CB. The genetic control of tertiary protein structure: Studies with model systems. Cold Spring Harbor Symp Quant Biol 1963;28:439–448.Google Scholar
  3. 3.
    Barraclough R, Ellis RJ. Protein synthesis in chloroplasts. IX. Assembly of newly synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact chloroplasts. Biochim Biophys Acta 1980;608:19–31.PubMedGoogle Scholar
  4. 4.
    Hemmingsen SM, Woolford C, van der Vies SM et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 1988;333:330–334.PubMedCrossRefGoogle Scholar
  5. 5.
    Haas IG, Wabl M. Immunoglobulin heavy chain binding protein. Nature 1983;306:387–389.PubMedCrossRefGoogle Scholar
  6. 6.
    Munro S, Pelham SRB. An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 1986;46:291–300.PubMedCrossRefGoogle Scholar
  7. 7.
    Young JC, Agashe VR, Siegers K et al. Pathways of chaperone-mediated folding in the cytosol. Nature Revs Mol Cell Biol 2004;5:781–791.CrossRefGoogle Scholar
  8. 8.
    Laskey RA, Honda BM, Mills AD et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 1978;275:416–420.PubMedCrossRefGoogle Scholar
  9. 9.
    Kihm AJ, Kong YI, Hong W et al. An abundant erythroid protein that stabilizes free alpha-hemoglobin. Nature 2002;417:758–767.PubMedCrossRefGoogle Scholar
  10. 10.
    Ellis RJ. Proteins as molecular chaperones. Nature 1987;328:378–379.PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis RJ, Hemmingsen SM. Molecular chaperones: Proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 1989;14:339–342.PubMedCrossRefGoogle Scholar
  12. 12.
    Fowler DM, Koulov AV, Alory-Jost C. Functional amyloid formation in mammalian tissue. PloS Biol 2006;4:0001–0008.CrossRefGoogle Scholar
  13. 13.
    Zettlmeiss G, Rudolph R, Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 1979;18:5567–5571.CrossRefGoogle Scholar
  14. 14.
    Minton AP. Molecular crowding: Analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzym 1988;295:127–149.CrossRefGoogle Scholar
  15. 15.
    Minton AP. Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 2000;10:34–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Minton AP. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 2001;276:10577–10580.PubMedCrossRefGoogle Scholar
  17. 17.
    Ellis RJ. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 2001;11:114–119.PubMedCrossRefGoogle Scholar
  18. 18.
    Zimmerman SB, Trach SO. Estimation of macromolecular concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 1991;222:599–620.PubMedCrossRefGoogle Scholar
  19. 19.
    Minton AP. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol Cell Biochem 1983;55:119–140.PubMedCrossRefGoogle Scholar
  20. 20.
    Minton AP, Colclasure GC, Parker JC. Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 1992;89:10504–10506.PubMedCrossRefGoogle Scholar
  21. 21.
    Zimmerman SB, Minton AP. Macromolecular crowding: Biochemical, biophysical and physiological consequences. Annu Rev Biophys Biomol Struct 1993;22:27–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Ellis RJ. Macromolecular crowding: Obvious but underappreciated. Trends Biochem Sci 2001;26:597–604.PubMedCrossRefGoogle Scholar
  23. 23.
    van den Berg B, Ellis RJ, Dobson CM. Effects of macromolecular crowding on protein folding and aggregation. EMBO J 1999;18:6927–6933.PubMedCrossRefGoogle Scholar
  24. 24.
    van den Berg B, Wain R, Dobson CM et al. Macromolecular crowding perturbs protein refolding kinetics: Implications for folding inside the cell. EMBO J 2000;19:3870–3875.PubMedCrossRefGoogle Scholar
  25. 25.
    Ellis RJ, Minton AP. Protein aggregation in crowded environments. Biol Chem 2006, (in press).Google Scholar
  26. 26.
    Kota J, Ljungdahl PO. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 2005;168:79–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Ellis RJ. Revisiting the Anfinsen cage. Folding and Design 1996;1:R9–R15.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin J, Hartl FU. The effect of macromolecular crowding on chaperonin-mediated protein folding. Proc Natl Acad Sci USA 94:1107–1112.Google Scholar
  29. 29.
    Martin J. Chaperonin function-Effects of crowding and confinement. J Mol Recog 2004;17:465–472.CrossRefGoogle Scholar
  30. 30.
    Ellis RJ. Chaperone function: The orthodox view. In: Henderson B, Pockley AG, eds. Molecular Chaperones and Cell Signalling. Cambridge University Press, 2005:3–41.Google Scholar
  31. 31.
    Goodsell DS. The Machinery of Life. Springer-Verlag, 1992:68.Google Scholar
  32. 32.
    Kiseleva EV. Secretory protein synthesis in Chironomus salivary gland cells is not coupled with protein translocation across endoplasmic reticulum membranes. Electron microscopic evidence. FEBS Lett 1989;257:251–253.PubMedCrossRefGoogle Scholar
  33. 33.
    Musgrove JE, Ellis RJ. The Rubisco large subunit binding protein. Phil Trans R Soc London B 1986;313:419–428.CrossRefGoogle Scholar
  34. 34.
    London J, Skrzynia C, Goldberg ME. Renaturation of E. coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem 1974;47:409–415.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • R. John Ellis
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations