Online Size Characterization of Nanofibers and Nanotubes

  • C. J. Unrau
  • R. L. Axelbaum
  • P. Biswas
  • P. Fraundorf
Part of the Topics in Applied Physics book series (TAP, volume 109)


Nanofibers are commonly found in industry and nanotubes are quickly growing in importance and applications. As the production and use of these materials expands, the need to quickly and accurately size their lengths and diameters in the aerosol phase is becoming increasingly important. This need can arise from a desire to obtain feedback for process control and monitoring, or to understand and monitor the effect of these materials on human health. For example, nanofibers such as asbestos can present severe health risks when airborne and the toxicity of such fibers may be directly related to nanofiber dimensions [1]. This concern has been the motivation for developing online methods of sizing nanofibers in aerosols [2].


Catalyst Particle Electrical Mobility Charge Parameter Differential Mobility Analyzer Condensation Particle Counter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lippmann, M. (1988). Asbestos exposure indexes. Environ Res 46:86–106.CrossRefGoogle Scholar
  2. [2]
    Baron, P.A., Sorensen, C.M., and Brockman, J.E. (2001). Nonspherical particle measurement: Shape factors, fractals and fibers. In: Willike, K., Baron, P.A. (Eds.) Nonspherical Particle Measurement: Shape Factors, Fractals and Fibers. Wiley, New York, pp. 705–749.Google Scholar
  3. [3]
    Mordkovich, V.Z. (2003). Carbon nanofibers: A new ultrahigh-strength material for chemical technology. Theor Found Chem Eng 37:429–438.CrossRefGoogle Scholar
  4. [4]
    Terrones, M. (2004). Carbon nanotubes: Synthesis and properties, electronic devices and other emerging applications. Int Mater Rev 49:325–377.CrossRefGoogle Scholar
  5. [5]
    Stober, W., Flaschsbart, H., and Hochrainer, D. (1970). The aerodynamic diameter of latex aggregates and asbestos fibers. Staub—Reinhalt Luft 30:1–12.Google Scholar
  6. [6]
    Burke, W. and Esmen, N.A. (1978). The inertial behavior of fibers. Amer Ind Hyg Assoc J 39:400–405.Google Scholar
  7. [7]
    Martonen, T.B. (1990). Measurement of aerodynamic size and related risk of airborne fibers. World Congress-Particle Technology, Kyoto Japan, Society of Powder Technology, Japan.Google Scholar
  8. [8]
    Griffiths, W.D. and Vaughn, N.P. (1986). The aerodynamic behaviour of cylindrical and spheroidal particles when settling under gravity. J Aerosol Sci 17:53–65.CrossRefGoogle Scholar
  9. [9]
    Asgharian, B. and Godo, M.N. (1999). Size separation of spherical particles and fibers in an aerosol centrifuge. Aerosol Sci Tech 30:383–400.CrossRefGoogle Scholar
  10. [10]
    Raabe, O.G., Braaten, D.A., Axelbaum, R.L., Teague, S.V., and Cahill, T.A. (1988). Calibration studies of the drum impactor. J Aerosol Sci 19:183–195.CrossRefGoogle Scholar
  11. [11]
    Raabe, O.G. (1976). Aerosol aerodynamic size conventions for inertial sampler calibration. J Air Pollut Control Assoc 26:856–860.Google Scholar
  12. [12]
    Allen, M.D. and Raabe, O.G. (1985). Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Tech 4:269–286.CrossRefGoogle Scholar
  13. [13]
    Cheng, Y.S., Allen, M.D., Gallegos, D.P., Yeh, H.C., and Peterson, K. (1988). Drag force and slip correction of aggregate aerosols. Aerosol Sci Tech 8:199–214.CrossRefGoogle Scholar
  14. [14]
    Cheng, Y.S., Powell, Q.H., Smith, S.M., and Johnson, N.F. (1995). Silicon-carbide whiskers—Characterization and aerodynamic behaviors. Am Ind Hyg Assoc J 56:970–978.Google Scholar
  15. [15]
    Heiss, J.F. and Coull, J. (1952). The effect of orientation and shape on the settling velocity of non-isometric particles in a viscous medium. Chem Eng Progress 48:133–140.Google Scholar
  16. [16]
    Youngren, G.K. and Acrivos, A. (1975). Stokes flow past a particle of arbitrary shape: A numerical solution. J Fluid Mech 69:377–403.CrossRefGoogle Scholar
  17. [17]
    Kasper, G., Niida, T., and Yang, M. (1985). Measurements of viscous drag on cylinders and chains of spheres with aspect ratio between 2 and 50. J Aerosol Sci 16:535–556.CrossRefGoogle Scholar
  18. [18]
    Chen, B.T., Irwin, R., Cheng, Y.S., Hoover, M.D., and Yeh, H.C. (1993). Aerodynamic behavior of fiber-like and disk-like particles in a millikan cell apparatus. J Aerosol Sci 24:181–195.CrossRefGoogle Scholar
  19. [19]
    Dahneke, B.E. (1973). Slip correction factors for nonspherical bodies: The form of the general law. J Aerosol Sci 4:163–170.CrossRefGoogle Scholar
  20. [20]
    Myojo, T. (1998.) A length-selective technique for fibrous aerosols. In: Spurny, K.R. (Ed.) Advances in Aerosol Filtration, Boca Raton, FL: Lewis, pp. 481–498.Google Scholar
  21. [21]
    Spurny, K.R., Stober, W., Opiela, H., and Weiss, G. (1979). Size-selective preparation of inorganic fibers for biological experiments. Am Ind Hyg Assoc J 40:20–38.Google Scholar
  22. [22]
    Baron, P.A., Deye, G.J., and Fernback, J. (1994). Length separation of fibers. Aerosol Sci Tech 21:179–192.CrossRefGoogle Scholar
  23. [23]
    Lipowicz, P.J. and Yeh, H.C. (1989). Fiber dielectrophoresis. Aerosol Sci Tech 11:206–212.CrossRefGoogle Scholar
  24. [24]
    Fuchs, N.A. (1964). The Mechanics of Aerosols. New York: Permagon.Google Scholar
  25. [25]
    Lilienfeld, P. (1985). Rotational electrodynamics of airborne fibers. J Aerosol Sci 16:315–322.CrossRefGoogle Scholar
  26. [26]
    Baron, P.A., Deye, G.J., Fernback, J.E., and Jones, W.G. (1998). Direct-reading measurement of fiber length/diameter distributions. Advances in Environmental Measurement Methods for Asbestos, Boulder, CO: American Society for Testing Materials.Google Scholar
  27. [27]
    Deye, G.J., Gao, P., Baron, P.A., and Fernback, J. (1999). Performance evaluation of a fiber length classifier. Aerosol Sci Tech 30:420–437.CrossRefGoogle Scholar
  28. [28]
    Wen, H.Y., Reischl, G.P., and Kasper, G. (1984a). Bipolar diffusion charging of fibrous aerosol particles: Charging theory. J Aerosol Sci 15:89–101.CrossRefGoogle Scholar
  29. [29]
    Wen, H.Y., Reischl, G.P., and Kasper, G. (1984b). Bipolar diffusion charging of fibrous aerosol particles: Charge and electrical mobility measurements on linear chain aggregates. J Aerosol Sci 15:103–122.CrossRefGoogle Scholar
  30. [30]
    Keefe, D., Nolan, P.J., and Rich, T.A. (1959). Charge equilibrium in aerosols according to the Boltzmann law. Proc R Ir Acad 60A:27–45.Google Scholar
  31. [31]
    Gunn, R. (1955). The statistical electrification of aerosols by ionic diffusion. J Colloid Interface Sci 10:107–119.Google Scholar
  32. [32]
    Natanson, G.L. (1960). Theory of charging submicroscopic aerosol particles as a result of capturing gas ions. J Tech Phys (Russian) 30:573–588.Google Scholar
  33. [33]
    Fuchs, N.A. (1963). On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis Pura Appl 56:185–193.CrossRefGoogle Scholar
  34. [34]
    Han, R.J. and Gentry, J.W. (1993). Field and combined diffusional and field charging of fibrous aerosols. Aerosol Sci Tech 18:165–179.CrossRefGoogle Scholar
  35. [35]
    Zebel, G., Hochrainer, D., and Boose, C. (1977). A sampling method with separated deposition of airborne fibers and other particles. J Aerosol Sci 8:205–213.CrossRefGoogle Scholar
  36. [36]
    Laframboise, J.G. and Chang, J.S. (1977). Theory of charge deposition on charged aerosol particles of arbitrary shape. J Aerosol Sci 8:331–338.CrossRefGoogle Scholar
  37. [37]
    Wang, C.C., Pao, J.R., and Gentry, J.W. (1988). Calculations and measurements of the charge distribution for non-spherical particles. J Aerosol Sci 19:805–808.CrossRefGoogle Scholar
  38. [38]
    Han, R.J. and Gentry, J.W. (1993). Unipolar diffusional charging of fibrous aerosols—theory and experiment. J Aerosol Sci 24:211–226.CrossRefGoogle Scholar
  39. [39]
    Gentry, J.W. (1972). Charging of aerosol by unipolar diffusion of ions. J Aerosol Sci 3:65–76.CrossRefGoogle Scholar
  40. [40]
    Hochrainer, D., Zebel, G., and Prodi, V. (1978). Ein gerat zur trennung von fasern und isometrischen partikeln bei der probenahme. Staub—Reinhalt Luft 38:425–429.Google Scholar
  41. [41]
    Griffiths, W.D. (1987). The shape selective sampling of fibrous aerosols. J Aerosol Sci 19:703–713.CrossRefGoogle Scholar
  42. [42]
    Yu, P.Y., Wang, C.C., and Gentry, J.W. (1987). Experimental measurement of the rate of unipolar charging of actinolite fibers. J Aerosol Sci 18:73–85.CrossRefGoogle Scholar
  43. [43]
    TSI Incorporated. (2000). Model 3080 Electrostatic Classifier: Instruction Manual. pp. b—5.Google Scholar
  44. [44]
    Chen, B.T., Yeh, H.C., and Hobbs, C.H. (1993). Size classification of carbon—fiber aerosols. Aerosol Sci Tech 19:109–120.CrossRefGoogle Scholar
  45. [45]
    Chen, B.T., Yeh, H.C., and Johnson, N.F. (1996). Design and use of a virtual impactor and an electrical classifier for generation of test fiber aerosols with narrow size distributions. J Aerosol Sci 27:83–94.CrossRefGoogle Scholar
  46. [46]
    Calvert, P. (1997). Potential applications of nanotubes. In: Ebbesen, T.W. (Ed.) Carbon Nanotubes: Preparation and Properties, Boca Raton, FL:CRC, pp. 277–292.Google Scholar
  47. [47]
    Saito, R., Dresselhaus, G., and Dresselhaus, U.S. (1998). Physical Properties of Carbon Nanotubes. London: Imperial College Press.Google Scholar
  48. [48]
    Planeix, J.M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P., and Ajayan, P.M. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936.CrossRefGoogle Scholar
  49. [49]
    Schlitter, R.R., Seo, J.W., Gimzewski, J.K., Durkan, C., Saifullah, M.S.M., and Welland, M.E (2001) Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292:1136–1139.CrossRefGoogle Scholar
  50. [50]
    Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129.CrossRefGoogle Scholar
  51. [51]
    Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J. (2000). Nanotube molecular wires as chemical sensors. Science 287:622–625.CrossRefGoogle Scholar
  52. [52]
    de Jonge, N., Lamy, Y., Schoots, K., and Oosterkamp, T.H. (2002). High brightness electron beam from a multi-walled carbon nanotube. Nature 420:393–395.CrossRefGoogle Scholar
  53. [53]
    Liu, J., Fan, S., and Dai, H. (2004). Recent advances in methods of forming carbon nanotubes. Mrs Bull 29:244–250.Google Scholar
  54. [54]
    Dillon, A.C., Parialla, P.A., Alleman, J.L., Perkins, J.D., and Heben, M.J. (2000). Controlling single-wall nanotube diameters with variation in laser pulse power. Chem Phys Lett 316:13–18.CrossRefGoogle Scholar
  55. [55]
    Puretzky, A.A., Geohegan, D.B., Fan, X., and Pennycook, S.J. (2000). Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys A 70:153–160.CrossRefGoogle Scholar
  56. [56]
    Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redlich, P., Ruhle, M., Kim, Y.A., Hayashi, T., and Endo, M. (2000). Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl Phys Lett 77:3385–3387.CrossRefGoogle Scholar
  57. [57]
    Andrews, R., Jacques, D., Rao, A.M., Derbyshire. F., Qian, D., Fan, X., Dickey, E.C., and Chen, J. (1999). Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem Phys Lett 303:467–474.CrossRefGoogle Scholar
  58. [58]
    Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., and Smalley, R.E. (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97.CrossRefGoogle Scholar
  59. [59]
    Cheng, H.M., Li, F., Sun, X., Brown, S.D.M., Pimenta, M.A., Marucci, A., Dresselhaus, G., and Dresselhaus, M.S. (1998). Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 289:602–610.CrossRefGoogle Scholar
  60. [60]
    Nikolaev, P. (2004). Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the hipco process. J Nanosci Nanotech 4: 307–316.CrossRefGoogle Scholar
  61. [61]
    Van der Wal, R.L., Ticich, T.M., and Curtis, V.E. (2000). Diffusion flame synthesis of single-walled carbon nanotubes. Chem Phys Lett 323:217–223.CrossRefGoogle Scholar
  62. [62]
    Height, M.J., Howard, J.B., Tester, J.W., and Sande, J.B.V. (2004). Flame synthesis of single-walled carbon nanotubes. Carbon 42:2295–2307.CrossRefGoogle Scholar
  63. [63]
    Lee, G.W., Jurng, J., and Hwang, J. (2004). Formation of nickel-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame. Combust Flame 139:167–175.CrossRefGoogle Scholar
  64. [64]
    Diener, M.D., Nichelson, N., and Alford, J.M. (2000). Synthesis of single-walled carbon nanotubes in flames. J Phys Chem B 104:9615–9620.CrossRefGoogle Scholar
  65. [65]
    Saveliev, A.V., Merchan-Merchan, W., and Kennedy, L.A. (2003). Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame 135:27–33.CrossRefGoogle Scholar
  66. [66]
    Pan, C.X., Liu, Y.L., Cao, F., Wang, J.B., and Ren, Y.Y. (2004). Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames. Micron 35:461–468.CrossRefGoogle Scholar
  67. [67]
    Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., and Castranova, V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Env Heal A 67:87–107.CrossRefGoogle Scholar
  68. [68]
    Nasibulin, A.G., Moisala, A., Brown, D.P., Jiang, H., and Kauppinen, E.I. (2005). A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett 402:227–232.CrossRefGoogle Scholar
  69. [69]
    Cheng, Y.S. (1991). Drag forces on nonspherical aerosol particles. Chem Eng Commun 108:201–223.CrossRefGoogle Scholar
  70. [70]
    Hinds, W.C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley.Google Scholar
  71. [71]
    Koratkar, N., Modi, A., Kim, J., Wei, B.Q., Vajtai, R., Talapatra, S., and Ajayan, P.M. (2004). Mobility of carbon nanotubes in high electric fields. J Nanosci Nanotechn 4:69–71.CrossRefGoogle Scholar
  72. [72]
    Kousaka, Y., Endo, Y., Ichitsubo, H., and Alonso, M. (1996). Orientation-specific dynamic shape factors for doublets and triplets of spheres in the transition regime. Aerosol Sci Tech 24:36–44.CrossRefGoogle Scholar
  73. [73]
    Batchelor, G.K. (1970). Slender-body theory for particles of arbitrary cross-section in stokes flow. J Fluid Mech 44:419–440.CrossRefGoogle Scholar
  74. [74]
    Dahneke, B.E. (1973). Slip correction factors of nonspherical bodies. I. Free molecule flow. J Aerosol Sci 4:147–161.CrossRefGoogle Scholar
  75. [75]
    Rothbard, D.R. (2003) Electron microscopy for the pulp and paper industry. In: Li, Z.R. (Ed.) Industrial Applications of Electron Microscopy, New York: Marcel DekkerGoogle Scholar
  76. [76]
    Chan, I.Y. (2003). Characterization of petroleum catalysts by electron microscopy. In: Li, Z.R. (Ed.) Industrial Applications of Electron Microscopy, New York: Marcel Dekker.Google Scholar
  77. [77]
    Kubic, T.A. (2003). Forensic applications of scanning electron microscopy with x-ray analysis. In: Li, Z.R. (Ed.) Industrial Applications of Electron Microscopy, New York: Marcel Dekker.Google Scholar
  78. [78]
    Choi, W.B. and Lee, Y.H. (2003). Carbon nanotube and its application to nanoelectronics. In: Li, Z.R. (Ed.) Industrial Applications of Electron Microscopy, New York: Marcel Dekker.Google Scholar
  79. [79]
    Liang, L. and Li, Z.R. (2003). Digital imaging in electron microscopy. In: Li, Z.R. (Ed.) Industrial Applications of Electron Microscopy, New York: Marcel Dekker.Google Scholar
  80. [80]
    NIOSH. NIOSH manual of analytical methods (4th). ONLINE. (1994). U.S. Division of Health and Human Services: National Institute of Occupational Safety and Health. Available: Scholar
  81. [81]
    Nichols, M.R., Moss, M.A., Reed, D.K., Lin, W., Mukhopadhyay, R., Hoh, J.H., and Rosenberry, T.L. (2002). Growth of a-amyloid(1–40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127.CrossRefGoogle Scholar
  82. [82]
    Mandell, E., Fraundorf, P., and Bertino, M.F. (2004). Powder patterns from nanocrystal lattice images. Microsc Microanal 10:1254–1255.Google Scholar
  83. [83]
    Russ, J.C. (1999). The Image Processing Handbook. Boca Raton, FL: CRC and IEEE.Google Scholar
  84. [84]
    Rasband, W. Imagej. http://rsbinfonihgov/ij/.Google Scholar
  85. [85]
    Gupta, S., Wang, Y.Y., Garguilo, J.M., and Nemanich, R.J. (2005). Imaging temperature dependent field emission from carbon nanotube films: Single- versus multi-walled. Appl Phys Lett 86:063109/1–063109/3.Google Scholar
  86. [86]
    Henn, A. and Fraundorf, P. (1990). A quantitative measure of the degree of fibrillation of short reinforcing fibers. J Mater Sci 25:3659–3663.CrossRefGoogle Scholar
  87. [87]
    Cliff, G. and Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J Microscopy 103:203–207.Google Scholar
  88. [88]
    Gibbons, P., Bradley, C.R., and Fraundorf, P.B. (1987). How to remove multiple scattering from core-excitation spectra iii: Varying the mean free path. Ultramicroscopy 21:305–312.CrossRefGoogle Scholar
  89. [89]
    Egerton, R.F. (1996). Electron Energy Loss Spectroscopy in the Electron Microscope. New York: Plenum.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. J. Unrau
  • R. L. Axelbaum
  • P. Biswas
  • P. Fraundorf

There are no affiliations available

Personalised recommendations