Holomorphy rings of function fields

  • Bruce Olberding


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abh56]
    S. Abhyankar. On the valuations centered in a local domain. Amer. J. Math., 78:321–348, 1956.CrossRefMathSciNetMATHGoogle Scholar
  2. [AK89]
    D. D. Anderson and B. G. Kang. Pseudo-Dedekind domains and divisorial ideals in R[X]T. J. Algebra, 122(2):323–336, 1989.CrossRefMathSciNetMATHGoogle Scholar
  3. [And85]
    C. Andradas. Real places in function fields. Comm. Algebra, 13(5):1151–1169, 1985.MathSciNetMATHGoogle Scholar
  4. [BCR98]
    J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry, volume 36 of Ergebniase der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998.Google Scholar
  5. [Bec82]
    E. Becker. The real holomorphy ring and sums of 2nth powers. In Real algebraic geometry and quadratic forms (Rennes, 1981), volume 959 of Lecture Notes in Math., pages 139–181. Springer, Berlin, 1982.Google Scholar
  6. [Ber95]
    R. Berr. On real holomorphy rings. In Real analytic and algebraic geometry (Trento, 1992), pages 47–66. de Gruyter, Berhn, 1995.Google Scholar
  7. [BJ85]
    E. Becker and B. Jacob. Rational points on algebraic varieties over a generalized real closed field: a model theoretic approach. J. Reine Angew. Math., 357:77–95, 1985.MathSciNetMATHGoogle Scholar
  8. [BK89]
    M. A. Buchner and W. Kucharz. On relative real holomorphy rings. manuscripta math., 63(3):303–316, 1989.CrossRefMathSciNetMATHGoogle Scholar
  9. [BS86]
    L. Bröcker and H.-W. Schülting. Valuations of function fields from the geometrical point of view. J. Reine Angew. Math., 365:12–32, 1986.MathSciNetMATHGoogle Scholar
  10. [Dre65]
    A. Dress. Lotschnittebenen mit halbierbarem rechtem Winkel. Arch. Math., 16:388–392, 1965.CrossRefMathSciNetMATHGoogle Scholar
  11. [FHO05]
    L. Fuchs, W. Heinzer, and B. Olberding. Commutative ideal theory without finiteness conditions: primal ideals. Trans. Amer. Math. Soc., 357(7):2771–2798, 2005.CrossRefMathSciNetMATHGoogle Scholar
  12. [FHP97]
    M. Fontana, J. A. Huckaba, and I. J. Papick. Prüfer domains, volume 203 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1997.Google Scholar
  13. [Gil69]
    R. Gilmer. Two constructions of Prüfer domains. J. Reine Angew. Math., 239/240:153–162, 1969.MathSciNetGoogle Scholar
  14. [Gil92]
    R. Gilmer. Multiplicative ideal theory, volume 90 of Queen’s Papers in Pure and Applied Mathematics. Queen’s University, Kingston, ON, 1992.Google Scholar
  15. [Kap74]
    I. Kaplansky. Commutative rings. The University of Chicago Press, Chicago, Ill.-London, 1974.MATHGoogle Scholar
  16. [KP84]
    F.-V. Kuhlmann and A. Prestel. On places of algebraic function fields. J. Reine Angew. Math., 353:181–195, 1984.MathSciNetMATHGoogle Scholar
  17. [Kuh04a]
    F.-V. Kuhlmann. Places of algebraic function fields in arbitrary characteristic. Adv. Math., 188(2):399–424, 2004.CrossRefMathSciNetMATHGoogle Scholar
  18. [Kuh04b]
    F.-V. Kuhlmann. Value groups, residue fields, and bad places of rational function fields. Trans. Amer. Math. Soc., 356(11):4559–4600 (electronic), 2004.CrossRefMathSciNetMATHGoogle Scholar
  19. [Lop94]
    K. A. Loper. On Prüfer non-D-rings. J. Pure Appl. Algebra, 96(3):271–278, 1994.CrossRefMathSciNetMATHGoogle Scholar
  20. [Lop97]
    K. A. Loper. Ideals of integer-valued polynomial rings. Comm. Algebra, 25(3):833–845, 1997.MathSciNetMATHGoogle Scholar
  21. [MLS39]
    S. MacLane and O. F. G. Schilling. Zero-dimensional branches of rank one on algebraic varieties. Ann. of Math. (2), 40:507–520, 1939.Google Scholar
  22. [Nak53]
    N. Nakano. Idealtheorie in eineni speziellen unendlichen algebraischen Zahlkörper. J. Sci. Hiroshima Univ. Ser. A., 16:425–439, 1953.MathSciNetMATHGoogle Scholar
  23. [OR]
    B. Olberding and M. Roitnian. The minimal number of generators of an invertible ideal, this volume.Google Scholar
  24. [Rib84]
    P. Ribenboim. Remarks on existentially closed fields and Diophantine equations. Rend. Sem. Mat. Univ. Padova, 71:229–237, 1984.MathSciNetMATHGoogle Scholar
  25. [Roq73]
    P. Roquette. Principal ideal theorems for holomorphy rings in fields. J. Reine Angew. Math., 262/263:361–374, 1973.MathSciNetGoogle Scholar
  26. [RusOl]
    D. Rush. Bezout domains with stable range 1. J. Pure Appl. Algebra, 158:309–324, 2001.CrossRefMathSciNetMATHGoogle Scholar
  27. [Sch82a]
    H.-W. Schülting. On real places of a field and their holomorphy ring. Comm. Algebra, 10(12):1239–1284, 1982.MathSciNetMATHGoogle Scholar
  28. [Sch82b]
    H.-W. Schülting. Real holomorphy rings in real algebraic geometry. In Real algebraic geometry and quadratic forms (Rennes, 1981), volume 959 of Lecture Notes in Math., pages 433–442. Springer, Berlin, 1982.Google Scholar
  29. [Zaf86]
    M. Zafrullah. On generalized Dedekind domains. Mathematika, 33(2):285–295 (1987), 1986.MathSciNetCrossRefGoogle Scholar
  30. [ZS75]
    O. Zariski and P. Samuel. Commutative algebra. Vol. II. Springer-Verlag, New York, 1975.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Bruce Olberding
    • 1
  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas Cruces

Personalised recommendations