Advertisement

A Practical Estimation Technique for Spatial Distribution of Groundwater Contaminant

  • Sungkwon Kang
  • Thomas B. Stauffer
  • Kirk Hatfield
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 13)

Abstract

To predict the fate of groundwater contaminants, accurate spatially continuous information is needed. Because most field sampling of groundwater contaminants are not conducted spatially continuous manner, a special estimation technique is required to interpolate/extrapolate concentration distributions at unmeasured locations. A practical three-dimensional estimation method for in situ groundwater contaminant concentrations is introduced.

Keywords

Robust Estimator Contaminant Plume Experimental Variograms Heterogeneous Aquifer Geostatistical Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Adams, E. E. and L. W. Gelhar (1992), Field study of dispersion in a heterogeneous aquifer, 2. Spatial moments analysis, Water Resour. Res., 28 (12): 3293–3307.CrossRefGoogle Scholar
  2. [2]
    ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology, Committee of the ASCE Hydraulics Division (1990), Review of geostatistics in geohydrology. I: Basic concepts; II. Applications, J. Hydraulic Engineering, 116(5): 612–632; 633–658.Google Scholar
  3. [3]
    Boggs, J. M., L. M. Beard, W. R. Waldrop, T. B. Stauffer, W. G. MacIntyre and C. P. Antworth (1993), Transport of tritium and four organic compounds during a natural gradient experiment (MADE-2), EPRI Report TR-101998, Electric Power Research Institute, Palo Alto, CA 94304.Google Scholar
  4. [4]
    Boggs, J. M., S. C. Young, L. M. Beard, L. W. Gelhar, K. R. Rehfeldt and E. E. Adams (1992), Field study of dispersion in a heterogeneous aquifer, 1. Overview and site description, Water Resour. Res., 28 (12): 3281–3291.CrossRefGoogle Scholar
  5. [5]
    Cooper, R. M. and J. D. Istok (1988), Geostatistics applied to groundwater contamination. I: Methodology; II: Application; III: Global estimates, J. Environmental Engineering, 114(2): 270–286; 287–299; 114 (4): 915–928.Google Scholar
  6. [6]
    Cressie, N. and D. M. Hawkins (1980), Robust estimation of the variogram: I, Mathematical Geology, 12 (2): 115–125.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Dowd, P. A. (1984), The variogram and kriging: Robust and resistant estimators, Geostatistics for Natural Resourses Characterization, Part I, NATO ASI Ser., Ser. C, 12: 91–107.Google Scholar
  8. [8]
    Freeze, R. A. and J. A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  9. [9]
    Garabedian, S. P., D. R. Leblanc, L. W. Gelhar, and M. A. Celia (1991), Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 2. Analysis of spatial moments for a nonreactive tracer, Water Resour. Res., 27 (5): 911–924.CrossRefGoogle Scholar
  10. [10]
    Journel, A. G. and J. C. Huijbregts (1991), Mining Geostatistics, 5th ed.,=20 Academic Press, San Diego.Google Scholar
  11. [11]
    Leblanc, D. R., S. P. Garabedian, K. M. Hess, L. W. Gelhar, R. D. Quardri, K. G. Stollenwerk, and W. W. Wood (1991), Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachussetts, 1. Experimental design and observed tracer movement, Water Resour. Res., 27 (5): 895–910.CrossRefGoogle Scholar
  12. [12]
    Mackay, D. M., D. L. Freyberg, P. V. Roberts, and J. A. Cherry (1986), A natural gradient experiment on solute transport in a sand aquifer, 1. Approach and overview of plume movement, Water Resour. Res., 22 (13): 2017–2079.CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 1999

Authors and Affiliations

  • Sungkwon Kang
    • 1
    • 2
  • Thomas B. Stauffer
    • 3
  • Kirk Hatfield
    • 4
  1. 1.Department of MathematicsChosun UniversityKwangjuKorea
  2. 2.Institute for Scientific ComputationTexas A&M UniversityCollege StationUSA
  3. 3.AFRL/MLQRTyndall AFBUSA
  4. 4.Department of Civil EngineeringUniversity of FloridaGainsvilleUSA

Personalised recommendations