Optimal control of variational inequalities: A mathematical programming approach

  • M. Bergounioux
Part of the IFIP — The International Federation for Information Processing book series (IFIPAICT)


We investigate optimal control problems governed by variational inequalities. and more precisely the obstacle problem. Since we adopt a numerical point of view, we first relax the feasible domain of the problem; then using both mathematical programming methods and penalization methods we get optimality conditions with smooth Lagrange multipliers.


Optimal control optimality conditions variational inequalities mathematical programming 


  1. Barbu V. (1984) Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100, Pitman, Boston.Google Scholar
  2. Bergounioux M. (1993) An Augmented Lagrangian Algorithm for Distributed Optimal Control Problems with State Constraints, Journal of Optimization Theory and Applications, 78, no. 3.Google Scholar
  3. Bergounioux M. (1995) Optimality Conditions For Optimal control of Elliptic Problems Governed by Variational Inequalities, Rapport de Recherche, 95–1, Université d’Orléans, submitted.Google Scholar
  4. Bergounioux M. and Tiba D. (1994) General Optimality Conditions for Constrained Convex Control Problems, SIAM Journal on Control and Optimization, to appear.Google Scholar
  5. Fortin M. and Glowinski R. (1982) Méthodes de Lagrangien Augmenté - Applications it la Résolution de Problèmes aux Limites, Méthodes Mathématiques pour l’Informatique, Dunod, Paris, France.Google Scholar
  6. Friedman A. (1982) Variational Principles and Free-Boundary Problems, Wiley, New York.zbMATHGoogle Scholar
  7. Friedman A. (1986) Optimal Control for Variational Inequalities, SIAM Journal on Control and Optimization, 24, no. 3, 439–451.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Glowinski R., Lions J.L. and Trémolières R. (1976) Analyse Numérique des Inéquations Variationnelles, Méthodes Mathématiques pour l’Informatique, Dunod, Paris, France. Mignot F. and Puel J.P. (1984) Optimal Control in Some Variational Inequalities, SIAM Journal on Control and Optimization, 22, no. 3, 466–476.Google Scholar
  9. Tröltzsch F. (1983) A modification of the Zowe and Kurcyusz regularity condition with application to the optimal control of Noether operator equations with constraints on the control and the state, Math. Operationforsch. Statist., Ser. Optimization, 14, no. 2, 245–253.zbMATHGoogle Scholar
  10. Tröltzsch F. (1984) Optimality conditions for parabolic control problems and applications, Teubner Texte, Leipzig.zbMATHGoogle Scholar
  11. Zowe J. and Kurcyusz S. (1979) Regularity and stability for the mathematical program- ming problem in Banach spaces, Applied mathematics and Optimization, 5, 49–62.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • M. Bergounioux
    • 1
  1. 1.URA-CNRS 1803, Université d’OrléansU.F.R. SciencesOrléans Cedex 2France

Personalised recommendations