The Role of El Niño—Southern Oscillation in Regulating its Background State

  • De-Zheng Sun


A nonlinear aspect of the El Niño—Southern Oscillation (ENSO)—its regulatory effect on the background state (the climatological state)—is described. In particular, it is shown that ENSO acts as a basin-scale heat “mixer” that prevents any significant increase from occurring in the time-mean difference between the warm-pool SST (Tw) and the temperature of the thermocline water (Tc). When this temperature contrast is forced to increase, the amplitude of ENSO increases—El Niño becomes warmer and La Niña becomes colder. A stronger La Niña event results in more heat transported to the subsurface of the western Pacific. A stronger El Niño event then warms the eastern Pacific and cools the western Pacific. The effect of a stronger La Niña event does not cancel the effect from a stronger El Niño event. The long-term mean effect of ENSO—the recurrent occurrence of El Niño and La Niña events—is to mix heat downward across the equatorial Pacific and prevent the time-mean difference between Tw and Tc from exceeding a critical value.

The results have implications for several climatic issues and these implications are discussed. In particular, it is noted that our existing paradigm to understand the response of ENSO to global warming needs to be modified. It is emphasized that it is the tendency in the stability forced by an increase in the greenhouse effect, not the actual changes in the time-mean climate, that ENSO responds to. Changes in the latter—changes in the mean climate—are a residual between the effect of the changes in the radiative forcing and the effect of the changes in the ENSO behavior.


Tropical Heating Poleward Heat Transport Equatorial Thermocline Equatorial Undercurrent Radiative Convective Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battisti, D.S., 1988: The dynamics and thermodynamics of a warm event in acoupled ocean-atmosphere model, J. Atmos. Sci, 45, 2889-2919CrossRefGoogle Scholar
  2. Carton, J.A., G. Chepurin, X. Cao, and B.S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology, J. Phys. Oceanogr., 30, 294-309.CrossRefGoogle Scholar
  3. Fedorov, A.V., and S.G. Philander, 2000: Is El Nino Changing? Science, 288, 1997-2002.CrossRefGoogle Scholar
  4. Gent, P.R., and M.A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Compute. Phys., 81, 444-480.CrossRefGoogle Scholar
  5. Jin, F.F., 1996: Tropical ocean-atmosphere interaction, the Pacific cold-tongue, and the El Nino-Southern Oscillation. Science, 274, 76-78.CrossRefGoogle Scholar
  6. Kalnay, E. and 21 coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.CrossRefGoogle Scholar
  7. Neelin, J.D., D.S. Battiti, A.C. Hirst, F.F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO Theory. J. Geophys. Res., 103, 14261-14290.CrossRefGoogle Scholar
  8. Penland, C., Flügel, M., and P. Chang, 2000: Identification of Dynamical Regimes in an Intermediate Coupled Ocean-Atmosphere Model J. of Climate,13, pp. 2105-2115.CrossRefGoogle Scholar
  9. Penland, C, and PD Sardeshmukh, 1995: The Optimal Growth of Tropical Sea Surface Temperature Anomalies J. Climate, 8, 1999-2024.CrossRefGoogle Scholar
  10. Philander, S.G., 1990: El Nino, La Nina, and the Southern Oscillation. Academic Press, New York, 293 pp.Google Scholar
  11. Rodgers, K.B., P. Friederichs, and M. Latif, 2004: Tropical Pacific Decadal Variability and its Relation to Decadal Modulations of ENSO. J. Climate, 17, 3761-3774.CrossRefGoogle Scholar
  12. Schopf, P. and R. Burgman, 2005: A Simple Mechanism for ENSO Residuals and Asymmetry. J. Climate, Accepted.Google Scholar
  13. Schneider, N., A. J. Miller, M.A. Alexander, C. Deser, 1999: Subduction of Decadal North Pacific Temperature Anomalies: Observations and Dynamics, J. Phys. Oceanogr., 29, 1056-1070.CrossRefGoogle Scholar
  14. Shin, S.-I and Z. Liu, 2000: Response of the equatorial thermocline to extratropical buoyancy forcing. J. Phys. Oceanogr., 30, 2883-2905.CrossRefGoogle Scholar
  15. Sun, D.-Z., 1997: El Niño: a coupled response to radiative heating? Geophys. Res. Lett., 24, 2031-2034.CrossRefGoogle Scholar
  16. Sun, D.-Z., 2000: The heat sources and sinks of the 1986-87 El Niño, J. Climate, 13, 3533-3550.CrossRefGoogle Scholar
  17. Sun, D.-Z., 2003: A Possible Effect of An Increase in the Warm-pool SST on the Magnitude of El Niño Warming. J. Climate, 16, 185-205.CrossRefGoogle Scholar
  18. Sun, D.-Z. and Z. Liu, 1996 : Dynamic ocean-atmosphere coupling: a thermostat for the tropics. Science, 272, 1148-1150.CrossRefGoogle Scholar
  19. Sun, D.-Z. and K.E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986-87 El Niño. Geophys. Res. Lett., 25, 2659-2662.CrossRefGoogle Scholar
  20. Sun, D.-Z., T. Zhang, C. Covey, S. Klein, W.D. Collins, J.J. Hack, J.T. Kiehl, G.A. Meehl, I.M. Held, and M. Suarez, 2005: Radiative and Dynamical Feedbacks Over the Equatorial Cold-tongue: Results from Nine Atmospheric GCMs. J. Climate, 19, 4059-4074.CrossRefGoogle Scholar
  21. Sun, D.-Z., T. Zhang, and S.-I. Shin, 2004 : The effect of subtropical cooling on the amplitude of ENSO: a numerical study. J. Climate, 17, 3786-3798.CrossRefGoogle Scholar
  22. Tsonis, A.A. ,J.B. Elsner, A.G. Hunt and T.H. Jagger, 2005: Unfolding the relation between global temperature and ENSO. Geophys. Res. Lett. doi:10.1029/2005GL022875.Google Scholar
  23. Wang, C., S.-P. Xie, and J. A. Carton, 2004: A global survey of ocean-atmosphere interaction and climate variability. In: Earth’s Climate: The Ocean-Atmosphere Interaction. C. Wang, S.-P. Xie, and J. A. Carton, Eds., AGU Geophysical Monograph.Google Scholar
  24. Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11 (9), 1205-1214.CrossRefGoogle Scholar
  25. Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Niño cycles, J. Geophys. Res.-Oceans, 90, 7129-7132.Google Scholar
  26. Xie, P., and P.A. Arkin, 1996: Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions. J. Climate, 9, 840-858.CrossRefGoogle Scholar
  27. Xu, K.M., and K. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471-1479.CrossRefGoogle Scholar
  28. Yeh, S.-W. and B.P. Kirtman, 2004: Tropical decadal variability and ENSO amplitude modulations in a CGCM J. Geophys. Res. 109, doi:10.1029/2004JC002442.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • De-Zheng Sun
    • 1
  1. 1.NOAA/ESRL/Physical Science Division BoulderCU/CIRES/Climate Diagnostics CenterBoulderUSA

Personalised recommendations