Evidence from Wavelet Lag Coherence for Negligible Solar Forcing of Climate at Multi-year and Decadal Periods

  • John Moore
  • Aslak Grinsted
  • Svetlana Jevrejeva

Abstract

We examine possible links between solar cycle irradiance variations the large atmospheric circulation systems that affect whole planet’s climate. In particular we examine the putative mechanism of solar forcing mediated by changes in induced stratospheric conditions over the polar regions. We test this hypothesis by examining causal links between time series of solar irradiance based on both amplitude and length of the 11-year solar sunspot cycle and indices of Arctic Oscillation AO and ENSO activity. We use a wavelet lag coherence method based on wavelet filtering to examine the significance and magnitude of the phase coherence of the pairs of series in lag-period space. Hence we study the non-linear phase dynamics of weakly interacting oscillating systems. The method clearly shows no link between AO or SOI with solar irradiance at all scales from biannual to decadal. We conclude that the 11-year cycle sometimes seen in climate proxy records is unlikely to be driven by solar forcing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, M. P., and Dunkerton, T. J. (2001) Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584.CrossRefGoogle Scholar
  2. Baldwin, M. P., and Dunkerton, T. J. (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30,937-30,946.Google Scholar
  3. Baldwin, M. P., and Dunkerton, T. J. (2005) The solar cycle and stratosphere-troposphere dynamical coupling J Atmos Sol Terr Phys, 67, 71-82CrossRefGoogle Scholar
  4. Barnston, A.G., and Livezey, R.E. (1989) A Closer Look at the Effect of the 11-Year Solar Cycle and the Quasi-biennial Oscillation on Northern Hemisphere 700 mb Height and Extratropical North American Surface Temperature, J. Clim. 2, 1295–1313, doi: 10.1175/1520-0442(1989)002CrossRefGoogle Scholar
  5. Dijkstra, H.A. and Ghil, M. (2005) Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach, Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.CrossRefGoogle Scholar
  6. Fligge M., and Solanki S.K. (2000) The solar spectral irradiance since 1700, Geophys. Res. Lett. 27 (14), 2157.CrossRefGoogle Scholar
  7. Grinsted, A., Moore J.C. and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series,Nonlinear Processes in Geophysics,11, 561-566.Google Scholar
  8. Hameed, S., and Lee, J. N. (2005), A mechanism for sun-climate connection, Geophys. Res. Lett., 32, L23817, doi:10.1029/2005GL024393CrossRefGoogle Scholar
  9. Hedfors, J., Aldahan, A. Kulan, A. Possnert, G. Karlsson, K.-G.and Vintersved, I. (2006), Clouds and 7Be: Perusing connections between cosmic rays and climate, J. Geophys. Res., 111, D02208, doi:10.1029/2005JD005903.CrossRefGoogle Scholar
  10. Jevrejeva, S., Moore J.C. and Grinsted, A. (2004). Oceanic and atmospheric transport of multi-year ENSO signatures to the polar regions. Geophys. Res. Lett., 31, L24210, doi:10.1029/2004GL020871CrossRefGoogle Scholar
  11. Kodera, K., and Kuroda, Y. (2002) Dynamical response to the solar cycle, J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224.CrossRefGoogle Scholar
  12. Kuroda, Y., and Shibata, K. (2005) Simulation of solar-cycle modulation of the Southern Annular Mode using a chemistry-climate model. Geophys. Res. Lett., 33, L05703, doi:10.1029/2005GL025095.CrossRefGoogle Scholar
  13. Labitzke, K. (2005) On the solar cycle-QBO relationship: a summary J Atmos Sol Terr Phys, 67 45-54.CrossRefGoogle Scholar
  14. Laut, P. (2003) Solar activity and terrestrial climate: an analysis of some purported correlations J Atmos Sol Terr Phys 65 801– 812CrossRefGoogle Scholar
  15. Mokhov, I. I. and Smirnov, D. A (2006) El Niño–Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices Geophys. Res. Lett., 33, L03708 10.1029/2005GL024557CrossRefGoogle Scholar
  16. Moore, J.C., Grinsted A. and Jevrejeva, S. (2006) Is there evidence for sunspot forcing of climate at multi-year and decadal periods? Geophys. Res. Lett.L17705, doi:10.1029/2006GL026501Google Scholar
  17. Moron, V., Vautard, R. and Ghil, M. (1998) Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim. Dyn. 14, 545–569.CrossRefGoogle Scholar
  18. Ropelewski, C. F., and Jones, P. D. (1987), An extension of the Tahiti-Darwin Southern Oscillation Index, Mon. Weather Rev., 115, 2161– 216CrossRefGoogle Scholar
  19. Solanki S.K. and Krivova, N.A. (2003) Can solar variability explain global warming since 1970? J. Geophys. Res. 108, 1200, doi:10.1029/2002JA009753.CrossRefGoogle Scholar
  20. Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the winter geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300.CrossRefGoogle Scholar
  21. Torrence, C. and Compo, G. P. (1998) A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61–78,.CrossRefGoogle Scholar
  22. Tsiropoula G. (2003) Signatures of solar activity variability in meteorological parameters J Atmos Sol Terr Phys, 65 469-482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John Moore
    • 1
  • Aslak Grinsted
    • 1
    • 2
  • Svetlana Jevrejeva
    • 3
  1. 1.Arctic Centre, University of Lapland96101 RovaniemiFinland
  2. 2.Department of GeophysicsUniversity of OuluFinland
  3. 3.Proudman Oceanographic LaboratoryLiverpoolUK

Personalised recommendations