Advertisement

The Eye at Altitude

  • Daniel S Morris
  • John Somner
  • Michael J Donald
  • Ian J C McCormick
  • Rupert R A Bourne
  • Suber S Huang
  • Peter Aspinall
  • Baljean Dhillon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 588)

Abstract

High altitude retinopathy (HAR) was first described in 1969 as engorgement of retinal veins with occasional papilloedema and vitreous hemorrhage. Since then various studies have attempted to define the incidence, etiology and significance of this phenomenon, usually with small numbers of subjects. Recently studies on relatively large groups of subjects in Nepal, Bolivia and Tibet have confirmed that the retinal vasculature becomes engorged and tortuous in all lowlanders ascending above 2500m. Sometimes this leads to hemorrhages, cotton wool spots and papilloedema, which is the pathological state better known as high altitude retinopathy. These studies have also shown a significant change in both corneal thickness and intraocular pressure at altitude. The retinal blood vessels are the only directly observable vascular system in the human body and also supply some of the most oxygen-demanding tissue, the photoreceptors of the retina. New techniques are being applied in both hypobaric chamber and field expeditions to observe changes in retinal function during conditions of hypobaric hypoxia. This work allows better advice to be given to lowlanders traveling to altitude either if they have pre-existing ocular conditions or if they suffer from visual problems whilst at altitude. This especially applies to the effect of altitude on refractive eye surgery and results of recent studies will be discussed so that physicians can advise their patients using the latest evidence. Retinal hypoxia at sea level accounts for the developed world’s largest cause of blindness, diabetic retinopathy. The investigation of retinal response to hypobaric hypoxia in healthy subjects may open new avenues for treatment of this debilitating disease.

Key Words

altitude, high altitude retinopathy corneal pachymetry intraocular pressure refractive surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello LP, Avery RL, and Arrigg PG. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331: 1480–1487, 1994.PubMedCrossRefGoogle Scholar
  2. 2.
    Aiello LP, Northrup JM, Keyt BA, Takagi H, and Iwamoto MA. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113(12): 1538–1544, 1995.PubMedGoogle Scholar
  3. 3.
    Bafa M, Lambrinakis I, Dayan M, and Birch M. Clinical comparison of the measurement of the IOP with the ocular blood flow tonometer, the Tono-Pen XL and the Goldmann applanation tonometer. Acta Ophthalmol Scand 79(1): 15–18, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Bandyopadhyay M, Raychaudhuri A, Lahiri SK, Schwartz EC, Myatt M, and Johnson GJ. Comparison of Goldmann applanation tonometry with the Tono-Pen for measuring IOP in a population-based glaucoma survey in rural West Bengal. Ophthalmic Epidemiol 9(3): 215–224, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Bayer A, Yumusak E, and Sahin OF. Intraocular pressure measured at ground level and 10,000 feet. Aviat Space Environ Med 75: 543–545, 2004.PubMedGoogle Scholar
  6. 6.
    Bergmanson JP, and Chu LW. Corneal response to rigid contact lens wear. Br J Ophthalmol 66: 667–675, 1982.PubMedGoogle Scholar
  7. 7.
    Binder PS, Stainer GA, Zavala EY, Deg JK, and Akers PH. Acute morphologic features of Radial Keratotomy. Arch Ophthalmol 101: 1113–1116, 1983.PubMedGoogle Scholar
  8. 8.
    Boes DA, Omura AK, and Hennessy MJ. Effect of high altitude exposure on myopic LASIK. J Cataract Refract Surg; 27: 1937–1941, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonanno JA, Nyguen T, Biehl T, Soni S. Can variability in corneal metabolism explain the variability in corneal swelling? Eye and Contact Lens: Science and Clinical Practice 29(1 Supp): S7–9, 2003.CrossRefGoogle Scholar
  10. 10.
    Brinchmann-Hansen O, and Myhre K. Blood pressure, intraocular pressure and retinal vessels after high altitude mountain exposure. Aviat Space Environ Med 60: 970–976, 1989.PubMedGoogle Scholar
  11. 11.
    Brinchmann-Hansen O, Myhre K. Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. Aviat Space Environ Med 61(2): 112–116, 1990.PubMedGoogle Scholar
  12. 12.
    Brinchmann-Hansen O, Myhre K, and Sandvik L. Retinal vessel responses to exercise and hypoxia before and after high altitude acclimatization. Eye 3: 768–776, 1989.PubMedGoogle Scholar
  13. 13.
    Brubaker RF. Tonometry and corneal thickness. Arch Ophthalmol 117(1): 104–105, 1999.PubMedGoogle Scholar
  14. 14.
    Butler FK, Harris DJ Jr, and Reynolds RD. Altitude retinopathy on Mount Everest, 1989. Ophthalmol 99: 739–746, 1992.Google Scholar
  15. 15.
    Carapancea M. Experimental and clinical hyperophthalmotony of high altitudes. Arch Ophthalmol Rev Gen Ophthalmol 37: 775–784, 1977.Google Scholar
  16. 16.
    Cheung AK, Siu AW, Cheung DW, and Mo EC. Production of hypoxia-induced corneal edema in aged eyes. Yen Ko Hsueh Pao (Eye Science). 20(1):1–5, 2004.Google Scholar
  17. 17.
    Clarke C, and Duff J. Mountain sickness, retinal haemorrhages and acclimatisation on Mount Everest in 1915. Br Med J ii: 495–497, 1976.Google Scholar
  18. 18.
    Cymerman A, Rock PB, Muza SR, Lyons TP, Fulco CS, Mazzeo RS, Butterfield G, and Moore LG. Intraocular pressure and acclimatization to 4300 M altitude Aviat Space Environ Med 71(10): 1045–1050, 2000.PubMedGoogle Scholar
  19. 19.
    Dimming JW, and Tabin G. The ascent of Mount Everest following LASIK. J Refract Surg, 19:48–52, 2003.Google Scholar
  20. 20.
    Feltgen N, Leifert D, and Funk J. Correlation between central corneal thickness, applanation tonometry and direct intracameral IOP readings. Br J Ophthalmol 85: 85–87, 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    Flynn WJ, Miller RE 2nd, Tredici TJ, and Block MG. Soft contact lens wear at altitude: effects of hypoxia. Aviat Space Environ Med 59(1): 44–8, 1988.PubMedGoogle Scholar
  22. 22.
    Frayser R, Houston CS, Bryan AC, Rennie ID, and Gray G. Retinal hemorrhage at high altitude. New Eng J Med 282(21): 1183–1184, 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Frayser R, Gray GW, and Houston CS. Control of the retinal circulation at altitude. J Appl Physiol 37(3): 302–304, 1974.PubMedGoogle Scholar
  24. 24.
    Frenkel REP, Hong YJ, and Shin DS. Comparison of the Tono-pen to the Goldmann Applanation Tonometer. Arch Ophthalmol 106: 750–753, 1988.PubMedGoogle Scholar
  25. 25.
    Garzozi HJ, Chung HS, and Lang Y. Intraocular pressure and PRK: a comparison of 3 different tonometers. Cornea 20: 33–36, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Hackett PH and Rennie D. Rales, peripheral oedema, retinal hemorrhage and acute mountain sickness. Am J Med 67: 214–218, 1979.PubMedCrossRefGoogle Scholar
  27. 27.
    Hackett PH and Rennie ID. Cotton wool spots: A new addition to high altitude retinopathy. In: High altitude physiology and medicine. Editors: Brendel W, Zink RA. New York: Springer-Verlag, 1982, 215–218.Google Scholar
  28. 28.
    Haefliger I, Meyer P, Flammer J, and Luscher T. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology? Surv Ophthalmol 39: 123–129, 1994.PubMedCrossRefGoogle Scholar
  29. 29.
    Harris A, Arend O, Wolf S, Cantor L, and Martin B. CO2 dependence of retinal arterial and capillary blood velocity. Acta Ophthalmologica 73: 421–424, 1995.CrossRefGoogle Scholar
  30. 30.
    Harris A, Ciulla TA, Chung HS, and Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol 116(11): 1491–1495, 1998.PubMedGoogle Scholar
  31. 31.
    Helmke H, and Hansen HC. Fundamentals of transorbital sonographic evaluation of the optic nerve sheath expansion under intracranial hypertension. I Experimental study Paediatr Radiol 26: 701–705, 1996.CrossRefGoogle Scholar
  32. 32.
    Helmke H, and Hansen HC. Fundamentals of transorbital sonographic evaluation of the optic nerve sheath expansion under intracranial hypertension. II Patient study. Paediatr Radiol 26: 706–710, 1996.CrossRefGoogle Scholar
  33. 33.
    Honigman B, Noordewier E, Kleinman D, and Yaron M. High altitude retinal hemorrhages in a Colorado skier. High Alt Med Biol 2(4): 539–544, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Houston CS, and McFadden DM. Long term effects of altitude on the eye. Lancet 338: 49, 1979.CrossRefGoogle Scholar
  35. 35.
    Jedlickova K, Stockton DW and Chen H. Search for genetic determinants of individual variability of the erythropoietin response to high altitude. Blood Cells Molecules & Diseases 31(2): 175–82, 2003.CrossRefGoogle Scholar
  36. 36.
    Johnson M, Kass MA, Moses RA, and Grodzki WJ. Increased corneal thickness simulating elevated IOP. Arch Ophthalmol 96: 664–665, 1978.PubMedGoogle Scholar
  37. 37.
    Kanski JJ. In: Clinical Ophthalmology-a systematic approach (4 th edition). Oxford: Butterworth-Heinemann, 1999, 168.Google Scholar
  38. 38.
    Kao SF, Lichter PR, Bergstrom TJ, Rowe S, and Musch DC. Clinical comparison of the Oculab Tono-Pen to the Goldmann applanation tonometer. Ophthalmol 94: 1541–1544, 1987.Google Scholar
  39. 39.
    Kobrick JL, and Appleton B. Effects of extended hypoxia on visual performance and retinal vascular state. J Appl Physiol 31(3): 357–362, 1971.PubMedGoogle Scholar
  40. 40.
    Koch DD. Knauer WJ 3rd, and Emery JM. High altitude corneal endothelial decompensation. Cornea 3(3): 189–91, 1984.PubMedCrossRefGoogle Scholar
  41. 41.
    Kramar PO, Drinkwater BL, Folinsbee J, and Bedi JF. Ocular functions and incidence of acute mountain sickness. Aviat Space Environ Med 54(2): 116–120, 1983.PubMedGoogle Scholar
  42. 42.
    Lang GE, and Kuba GB. High altitude retinopathy. Am J Ophthalmol 123(3): 418–420, 1997.PubMedGoogle Scholar
  43. 43.
    Lee AG, Aldana AE, Harper RL. High altitude retinopathy. J Neuro-ophthalmol 19(3): 205–206, 1999.Google Scholar
  44. 44.
    Lempert P, Cooper KH, Culver JF, and Tredici, TJ. The effect of exercise on intraocular pressure. Am J Ophthalmol 63(6): 1673–1676, 1967.PubMedGoogle Scholar
  45. 45.
    Mader TH, Blanton CL, Gilbert BN, Kubis KC, Schallhorn SC, White LJ, Parmley VC, and Ng JD. Refractive changes during 72 hour exposure to high altitude after refractive surgery. Ophthalmol 103: 1188–1195, 1996.Google Scholar
  46. 46.
    Mader TH, and Tabin G. Going to high altitude with pre-existing ocular conditions. High Alt Med Biol 4(4): 419–430, 2003.PubMedCrossRefGoogle Scholar
  47. 47.
    Mader TH, and White LJ. Refractive changes at extreme altitude after RK. Am J Ophthalmol 119: 733–737, 1995.PubMedGoogle Scholar
  48. 48.
    Mader TH, White LJ, Johnson DS, and Barth FC. The ascent of Mount Everest following radial keratotomy. Wildern Environ Med 13: 53–54, 2002.Google Scholar
  49. 49.
    Marsich MM, and Bullimore MA, The repeatability of corneal thickness measures. Cornea 19(6): 792–795, 2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Mastropasqua L, Ciancaglini M, Di Tano G, Carpineto P, Lobefalo L, Loffredo B, Bosco D, Columbaro M, and Falcieri E. Ultrastructural changes in rat cornea after prolonged hypobaric hypoxia. J Submicroscopic Cytol & Pathol 30(2): 285–93, 1998.Google Scholar
  51. 51.
    Mastyugin V, Mosaed S, Bonazzi A, Dunn MW and Schwartzman ML. Corneal epithelial VEGF and cytochrome p450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res 23(1): 1–10, 2001.PubMedCrossRefGoogle Scholar
  52. 52.
    McFadden DM, Houston CS, Sutton JR, Powles ACP, Gray GW, and Roberts RS. High Altitude Retinopathy. JAMA 245: 581–586, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Minkler DS, Baerveldt G, Heuer DK, Quillen-Thomas B, Walonker AF, and Weiner J. Clinical evaluation of the Oculab Tono-pen. Am J Ophthalmol 104: 168–173, 1987.Google Scholar
  54. 54.
    Modis L, Langenbucher A, and Seitz B. Scanning-slit and specular microscopic pachymetry in comparison with ultrasonic determination of corneal thickness. Cornea 20(7): 711–714, 2001.PubMedCrossRefGoogle Scholar
  55. 55.
    Müllner-Eidenböck A, Rainer G, Strenn K, and Zidek T. High altitude retinopathy and retinal vascular dysregulation. Eye 14: 724–729, 2000.PubMedGoogle Scholar
  56. 56.
    Nelson ML, Brady S, Mader TH, White LJ, Parmley VC and Winkle RK. Refractive changes caused by hypoxia after LASIK. Ophthalmol 108: 542–544, 2001.Google Scholar
  57. 57.
    Newman WD, Hollman AS, Dutton GN and Carachi R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86: 1109–1113, 2002.PubMedCrossRefGoogle Scholar
  58. 58.
    Ng JD, White LJ, Parmley VC, Hubickey W, Carter J, and Mader TH. Effects of simulated high altitude on patients who have had RK. Ophthalmol 103: 453–457, 1996.Google Scholar
  59. 59.
    Nguyen T, Soni PS, Brizendine E, and Bonanno JA. Variability in hypoxia-induced corneal swelling is associated with variability in corneal metabolism and endothelial function. Eye and Contact Lens: Science and Clinical Practice 29(2): 117–125, 2003.CrossRefGoogle Scholar
  60. 60.
    Palmer RM, Ferrige AG, and Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987.PubMedCrossRefGoogle Scholar
  61. 61.
    Passo MS, Goldberg L, Elliot DL, and Van Buskirk EM. Exercise conditioning and Intraocular Pressure. Am J Ophthalmol 103: 754–757, 1987.PubMedGoogle Scholar
  62. 62.
    Polse KA, Brand R, Mandell R, Vastine D, DeMartini D, and Flom R. Age differences in corneal hydration control. Invest Ophthalmol Vis Sci 30(3): 392–399, 1989.PubMedGoogle Scholar
  63. 63.
    Polse KA, and Mandell RB. Critical oxygen tension at the corneal surface. Arch Ophthalmol 84: 505–508, 1970.PubMedGoogle Scholar
  64. 64.
    Realini T, and Lovelace K. Measuring central corneal thickness with ultrasound pachymetry. Optom Vis Sci 80(6): 437–439, 2003.PubMedCrossRefGoogle Scholar
  65. 65.
    Rennie D, and Morrisey J. Retinal changes in Himalayan climbers. Arch Ophthalmol 93: 395–400, 1975.PubMedGoogle Scholar
  66. 66.
    Roach RC, Bartcsh P, Oelz O, Hackett PH, and Lake Louise AMS Scoring Consensus Committee. The Lake Louise Acute Mountain Sickness Scoring System. In: Sutton JR, Houston CS, Coates G, eds. Hypoxia and molecular medicine. Burlington, VT.: Charles S Houston, 1993:272–274.Google Scholar
  67. 67.
    Sanchis-Gimeno JA, Lleo-Perez A, Alonso L, Rahhal MS, and Martinez-Soriano F. Anatomic study of the corneal thickness of young emmetropic subjects. Cornea 23: 669–673, 2004.PubMedCrossRefGoogle Scholar
  68. 68.
    Sarver MD, Polse KA, and Baggett DA. Intersubject difference in corneal response to hypoxia. Am J of Optom and Physiological Optics 60(2): 128–131, 1983.Google Scholar
  69. 69.
    Schumacher GA, and Petajan JH. High altitude stress and retinal hemorrhage-relation to vascular headache mechanisms. Arch Environ Health 30: 217–221, 1975.PubMedGoogle Scholar
  70. 70.
    Shults WT, and Swan KC. High altitude retinopathy in mountain climbers. Arch Ophthalmol 93: 404–408, 1975.PubMedGoogle Scholar
  71. 71.
    Singh I, Khanna PK, Srivastava MC, Lal M, Roy SB, and Subramanyam CSV. Acute Mountain Sickness. New Eng J Med 280(4): 175–184, 1969.PubMedCrossRefGoogle Scholar
  72. 72.
    Sutton JR, Coates G, Gray GW, Mansell AL, Powles P, and Zahoruk R. Retinal studies at 466 torr in a hypobaric chamber. Aviat Space Environ Med 51(4): 407–408, 1980.PubMedGoogle Scholar
  73. 73.
    Tingay DG, Tsimnadis P, and Basnyat B. A blurred view from Everest. Lancet 362: 1978, 2003.PubMedCrossRefGoogle Scholar
  74. 74.
    du Toit R, Vega JA, Fonn D, and Simpson T. Diurnal variation of corneal sensitivity and thickness. Cornea 22(3): 205–209, 2003.PubMedCrossRefGoogle Scholar
  75. 75.
    Walter R. Maggiorini M. Scherrer U. Contesse J. and Reinhart WH. Effects of highaltitude exposure on vascular endothelial growth factor levels in man. Eur J Appl Physiol 85(1–2):113–7, 2001.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang J, Fonn D, Simpson TL, and Jones L. The measurement of corneal epithelial thickness in response to hypoxia using optical coherence topography. Am J Ophthalmol 133(3): 315–319, 2002.PubMedCrossRefGoogle Scholar
  77. 77.
    Whitacre MM, Stein RA, and Hassanein K. The effect of corneal thickness on applanation tonometry. Am J Ophthalmol 115: 592–596, 1993.PubMedGoogle Scholar
  78. 78.
    White LJ, and Mader TH. Refractive changes with increasing altitude after RK. Am J Ophthalmol 115(6): 821–823, 1993.PubMedGoogle Scholar
  79. 79.
    White LJ, and Mader TH. Refractive changes at high altitude after LASIK. Ophthalmol 107(12): 2118, 2000.Google Scholar
  80. 80.
    Wiedman M. High altitude retinal hemorrhage. Arch Ophthalmology 93: 401–403, 1975.Google Scholar
  81. 81.
    Wiedman M, and Tabin GC. High Altitude Retinopathy and Altitude Illness. Ophthalmol 106: 1924–1927, 1999.Google Scholar
  82. 82.
    Winkle RK, Mader TH, Parmley VC, White LJ, and Polse KA. The etiology of refractive changes at high altitude after RK. Ophthalmol 105: 282–286, 1998.Google Scholar
  83. 83.
    Wilmer WH and Berens C. The effect of altitude on ocular functions. JAMA 71: 1382–1400, 1918.Google Scholar
  84. 84.
    Ziadi M, Moiroux P, d’Athis P, Bron A, Brun J-M, and Creuzot-Garcher C. Assessment of induced corneal hypoxia in diabetic patients. Cornea 21(5): 453–457, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Daniel S Morris
    • 1
  • John Somner
    • 2
  • Michael J Donald
    • 3
  • Ian J C McCormick
    • 2
  • Rupert R A Bourne
    • 4
  • Suber S Huang
    • 5
  • Peter Aspinall
    • 6
  • Baljean Dhillon
    • 7
  1. 1.Royal Victoria InfirmaryNewcastle-upon-TyneUK
  2. 2.Royal Infirmary of EdinburghEdinburghUK
  3. 3.Royal North Shore HospitalSydneyAustralia
  4. 4.Moorfields Eye HospitalLondonUK
  5. 5.Retinal Diseases Image Analysis Reading CenterClevelandUSA
  6. 6.Heriot-Watt UniversityEdinburghUK
  7. 7.Princess Alexandra Eye PavilionEdinburghUK

Personalised recommendations