Vascular Leukocytes: a Population with Angiogenic and Immunossuppressive Properties Highly Represented in Ovarian Cancer

  • George Coukos
  • Jose R. Conejo-Garcia
  • Ron Buckanovich
  • Fabian Benencia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


Physiological angiogenesis occurs mainly during the embryonic stage, originating a vascular network that meets the nutritional and functional demands of the developing organism. In the embryo, formation of blood vessels occurs via vasculogenesis and angiogenesis. Vasculogenesis involves the de-novo differentiation of endothelial cells from angioblasts, mesoderm-derived precursor cells, which assemble into primary capillary vessels1. This network differentiates then by angiogenesis, where new vessels arise from sprouting of preexisting capillaries. In the adult, physiological neovessel formation is involved in wound healing, tissue remodeling, and the female reproductive cycle, while pathological angiogenesis is associated with ischemia, rheumatoid arthritis, diabetic retinopathy, age-related macular degeneration, psoriasis, inflammatory bowel diseases, endometriosis, and tumor neovascularization2,3. Pathological neovascularization is characterized by increased vascular permeability, which leads to leakage, hemorrhaging, and inflammation. Although sprouting of blood vessels is the principal process in neovascularization, other mechanisms such as intussusception or cooptation of circulating endothelial cell progenitors have also been described 4.


Vascular Endothelial Growth Factor Ovarian Cancer Ovarian Carcinoma Endothelial Cell Progenitor Costimulatory Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. 1.
    S. Patan. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50(1–2):1–15 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Papetti and I.M. Herman. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282(5):C947–C970 (2002).PubMedGoogle Scholar
  3. 3.
    N. Ferrara. VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Djonov, O. Baum and P.H. Burri. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Rafii. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105(1):17–19 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Urbich and S. Dimmeler. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14(8):318–322 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Urbich and S. Dimmeler. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Asahara, H. Masuda, T. Takahashi, C. Kalka, C. Pastore, M. Silver, M. Kearne, M. Magner and J.M. Isner. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228 (1999).PubMedGoogle Scholar
  9. 9.
    Y. Lin, D.J. Weisdorf, A. Solovey and R.P. Hebbel. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77 (2000).PubMedGoogle Scholar
  10. 10.
    D. Lyden, K. Hattori, S. Dias, C. Costa, P. Blaikie, L. Butros, A. Chadburn, B. Heissig, W. Marks, L. Witte, Y. Wu, D. Hicklin, Z. Zhu, N.R. Hackett, R.G. Crystal, M.A. Moore, K.A. Hajjar, K. Manova, R. Benezra and S. Rafii. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Rehman, J. Li, C.M. Orschell and K.L. March. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    B._Fernandez Pujol, F.C. Lucibello, U.M. Gehling, K. Lindemann, N. Weidner, M.L. Zuzarte, J. Adamkiewicz, H.P. Elsasser, R. Muller and K. Havemann. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65(5):287–300 (2000).CrossRefGoogle Scholar
  13. 13.
    B. Fernandez Pujol, F.C. Lucibello, M. Zuzarte, P. Lutjens, R. Muller and K. Havemann. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80(1):99–110 (2001).CrossRefGoogle Scholar
  14. 14.
    A. Schmeisser, C.D. Garlichs, H. Zhang, S. Eskafi, C. Graffy, J. Ludwig, R.H. Strasser and W.G. Daniel. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49(3):671–680 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Yang, L.M. DeBusk, K. Fukuda, B. Fingleton, B. Green-Jarvis, Y. Shyr, L.M. Matrisian, D.P. Carbone and P.C. Lin. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Zhao, D. Glesne and E. Huberman. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100(5):2426–2431 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Glod, D. Kobiler, M. Noel, R. Koneru, S. Lehrer, D. Medina, D. Maric and H.A. Fine. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 107(3):940–946 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    A.P. Vicari, C. Chiodoni, C. Vaure, S. Ait-Yahia, C. Dercamp, F. Matsos, O. Reynard, C. Taverne, P. Merle, M.P. Colombo, A. O’Garra, G. Trinchieri and C. Caux. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196(4):541–549 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Folkman. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18 (2002).PubMedGoogle Scholar
  20. 20.
    T. Tonini, F. Rossi and P.P. Claudio. Molecular basis of angiogenesis and cancer. Oncogene 22(42):6549–6556 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Ribatti. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol 128(3):303–309 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Zhang, J.R. Conejo-Garcia, D. Katsaros, P.A. Gimotty, M. Massobrio, G. Regnani, A. Makrigiannakis, H. Gray, K. Schlienger, M.N. Liebman, S.C. Rubin and G. Coukos. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Zhang, N. Yang, J.R. Garcia, A. Mohamed, F. Benencia, S.C. Rubin, D. Allman and G. Coukos. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol 161(6):2295–2309 (2002).PubMedGoogle Scholar
  24. 24.
    J.R. Conejo-Garcia, R.J. Buckanovich, F. Benencia, M.C. Courreges, S.C. Rubin, R.G. Carroll and G. Coukos. Vascular leukocytes contribute to tumor vascularization. Blood 105(2):679–681 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    J.R. Conejo-Garcia, F. Benencia, M.C. Courreges, E. Kang, A. Mohamed-Hadley, R.J. Buckanovich, D.O. Holtz, A. Jenkins, H. Na, L. Zhang, D.S. Wagner, D. Katsaros, R. Caroll and G. Coukos. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10(9):950–958 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    M.C. Courreges, F. Benencia, J.R. Conejo-Garcia, L. Zhang and G. Coukos. Preparation of apoptotic tumor cells with replication-incompetent HSV augments the efficacy of dendritic cell vaccines. Cancer Gene Ther 13(20):182–193 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    D.I. Gabrilovich, H.L. Chen, K.R. Girgis, H.T. Cunningham, G.M. Meny, S. Nadaf, D. Kavanaugh and D.P. Carbone. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm and D.P. Carbone. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • George Coukos
    • 1
    • 2
  • Jose R. Conejo-Garcia
    • 1
    • 2
  • Ron Buckanovich
    • 1
    • 2
  • Fabian Benencia
    • 1
    • 2
  1. 1.Center for Research in Reproduction and Women’s HealthUniversity of PennsylvaniaPhiladelphia
  2. 2.Abramson Family Cancer Research InstituteUniversity of PennsylvaniaPhiladelphia

Personalised recommendations