Advertisement

Ionization of Small Molecules by Strong Laser Fields

  • Hiromichi NiikuraEmail author
  • V.R. Bhardwaj
  • F. Légaré
  • I.V. Litvinyuk
  • P.W. Dooley
  • D.M. Rayner
  • M. Yu Ivanov
  • P.B. Corkum
  • D.M. Villeneuve
Part of the Springer Series in Optical Sciences book series (SSOS, volume 134)

Introduction

Ionization is fundamental to many technologies. Mass spectrometry relies on ionization, as does femtosecond laser machining. Ionization is the fundamental nonlinearity behind attosecond science – the worldwide effort to generate optical pulses that last only a single atomic unit of time. Molecular ionization and the fate of the molecular fragments (ions and electrons) will be the focus of this review.

Ionization of atoms and molecules in intense, infrared or near-infrared laser fields is fundamentally different from that in low-intensity fields. The latter requires either a photon with sufficient energy to directly ionize or an electronic resonance that aids in the ionization. An example of the latter is resonance-enhanced multiphoton ionization (REMPI). When the laser intensity becomes great enough, the need for electronic resonances is removed. Indeed, the electronic levels are strongly modified by the presence of the intense field, and the idea of resonances is less...

Keywords

Wave Packet Laser Field Stark Shift Double Ionization Laser Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. D. G. Walsh, L. Strach, and S. L. Chin, “Above-threshold dissociation in the long-wavelength limit,” J. Phys. B 31, 4853 (1998).CrossRefADSGoogle Scholar
  2. 2.
    G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of \({\rm H}_2^+\) using ultrashort laser pulses,” Phys. Rev. Lett. 79, 2022 (1997).CrossRefADSGoogle Scholar
  3. 3.
    J. H. Posthumous, A. J. Giles, M. R. Thompson, W. Shaikh, A. J. Langley, L. J. Frasinski, and K. Codling, “The dissociation dynamics of diatomic molecules in intense laser fields,” J. Phys. B 29, L525 (1996).CrossRefADSGoogle Scholar
  4. 4.
    M. Schmidt, P. D’Oliveira, P. Meynadier, D. Normand, and C. Cornaggia, “Strong laser field interaction with diatomic molecules: From the ultra-short to long-pulse regime,” J. Nonlinear Opt. Phys. Mat. 4, 817 (1995).CrossRefADSGoogle Scholar
  5. 5.
    A. Hishikawa, H. Hasegawa, and K. Yamanouchi, “Sequential three-body Coulomb explosion of \({\rm CS}_2\) in intense laser fields appearing in momentum correlation map,” Chem. Phys. Lett. 361, 245 (2002).CrossRefADSGoogle Scholar
  6. 6.
    H. Rottke, C. Trump, and W. Sandner, “Multiphoton ionization and dissociation of \({\rm H}_2\)O,” J. Phys. B 31, 1083 (1998).CrossRefADSGoogle Scholar
  7. 7.
    H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, E. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794 (1998).CrossRefADSGoogle Scholar
  8. 8.
    V. R. Bhardwaj, P. B. Corkum, and D. M. Rayner, “Internal laser-induced dipole force at work in \({\rm C}_{60}\) molecule,” Phys. Rev. Lett. 91, 203004 (2003).CrossRefADSGoogle Scholar
  9. 9.
    T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57 (2001).CrossRefADSGoogle Scholar
  10. 10.
    H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787 (1997).CrossRefADSGoogle Scholar
  11. 11.
    D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).CrossRefADSGoogle Scholar
  12. 12.
    P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 23406 (2003).CrossRefADSGoogle Scholar
  13. 13.
    H. Sakai, C. P. Safvan, J. J. Larsen, K. M. Hilligs, K. Hald, and H. Stapelfeldt, “Controlling the alignment of neutral molecules by a strong laser field,” J. Chem. Phys. 110, 10235 (1999).CrossRefADSGoogle Scholar
  14. 14.
    F. Rosca-Pruna, E. Springate, H. L. Oerhaus, M. Krishnamurthy, N. Farid, C. Nicole, and M. J. J. Vrakking, “Spatial alignment of diatomic molecules in intense laser fields: I. experimental results,” J. Phys . B 34, 4919 (2001).CrossRefADSGoogle Scholar
  15. 15.
    L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965), (JETP 47, 1945 (1964)).Google Scholar
  16. 16.
    M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).Google Scholar
  17. 17.
    A. M. Perelemov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).ADSGoogle Scholar
  18. 18.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207 (1967).ADSGoogle Scholar
  19. 19.
    A. M. Perelemov and V. S. Popov, “Ionization of atoms in an alternating electric field. III,” Sov. Phys. JETP 25, 336 (1967).ADSGoogle Scholar
  20. 20.
    G. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 13409 (2001).CrossRefADSGoogle Scholar
  21. 21.
    P. Dietrich and P. B. Corkum, “ionization and dissociation of diatomic molecules in intense infrared laser fields,” J. Chem. Phys. 97, 3187 (1992).CrossRefADSGoogle Scholar
  22. 22.
    S. M. Hankin, D. M. Villeneuve, P. B. Corkum, and D. M. Rayner, “Nonlinear ionization of organic molecules in high intensity laser fields,” Phys. Rev. Lett. 84, 5082 (2000).CrossRefADSGoogle Scholar
  23. 23.
    A. Talebpour, C.-Y. Chien, and S. L. Chin, “The effects of dissociative recombination in multiphoton ionization of \({\rm O}_2\),” J. Phys . B 29, L677 (1996).CrossRefADSGoogle Scholar
  24. 24.
    C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, “Single and double ionization of diatomic molecules in strong laser fields,” Phys. Rev. A 58, R4271 (1998).CrossRefADSGoogle Scholar
  25. 25.
    M. J. Dewitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101 (1998).CrossRefADSGoogle Scholar
  26. 26.
    M. J. DeWitt and R. J. Levis, “Concerning the ionization of large polyatomic molecules with intense ultrafast lasers,” J. Chem. Phys. 110, 11368 (1999).CrossRefADSGoogle Scholar
  27. 27.
    S. M. Hankin, D. M. Villeneuve, P. B. Corkum, and D. M. Rayner, “Intense-field laser ionization rates in atoms and molecules,” Phys. Rev. A 64, 013405 (2001).CrossRefADSGoogle Scholar
  28. 28.
    J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280 (2000).CrossRefADSGoogle Scholar
  29. 29.
    V. R. Bhardwaj, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, “Quantum interference effects in double ionization and fragmentation of \({\rm C}_{6} {\rm H}_{6}\),” Phys. Rev. Lett. 87, 417 (2001).CrossRefGoogle Scholar
  30. 30.
    M. J. DeWitt, E. Wells, and R. R. Jones, “Ratiometric comparison of intense field ionization of atoms and diatomic molecules,” Phys. Rev. Lett. 87, 153001 (2001).CrossRefADSGoogle Scholar
  31. 31.
    I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, “Alignment-dependent strong field ionization of molecules,” Phys. Rev. Lett. 90, 233003 (2003).CrossRefADSGoogle Scholar
  32. 32.
    X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66, 033402 (2002).CrossRefADSGoogle Scholar
  33. 33.
    M. Lezius, V. Blanchet, M. Y. Ivanov, and A. Stolow, “Polyatomic molecules in strong laser fields: Nonadiabatic multielectron dynamics,” J. Chem. Phys. 117, 1575 (2002).CrossRefADSGoogle Scholar
  34. 34.
    M. Lezius, V. Blanchet, D. M. Rayner, D. M. Villeneuve, A. Stolow, and M. Y. Ivanov, “Nonadiabatic multielectron dynamics in strong field molecular ionization,” Phys. Rev. Lett. 86, 51 (2001).CrossRefADSGoogle Scholar
  35. 35.
    H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Y. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sub-laser-cycle electron pulses for probing molecular dynamics,” Nature 417, 917 (2002).CrossRefADSGoogle Scholar
  36. 36.
    P. B. Corkum, “A Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).CrossRefADSGoogle Scholar
  37. 37.
    D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642 (1992).CrossRefADSGoogle Scholar
  38. 38.
    P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High harmonic generation and correlated two electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, 3585 (1994).CrossRefADSGoogle Scholar
  39. 39.
    N. B. Delone and V. P. Krainov, “Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation,” J. Opt. Soc. Am. B 8, 1207 (1991).CrossRefADSGoogle Scholar
  40. 40.
    P. B. Corkum, N. H. Burnett, and F. Brunel, “Above threshold ionization in the long wavelength limit,” Phys. Rev. Lett. 62, 1289 (1989).CrossRefADSGoogle Scholar
  41. 41.
    T. Brabec, M. Y. Ivanov, and P. B. Corkum, “Coulomb focussing in intense field Atomic Processes,” Phys. Rev. A 54, 2551 (1996).CrossRefADSGoogle Scholar
  42. 42.
    P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the \({\rm H}_2^+\) molecular bond in intense laser fields,” Phys. Rev. Lett. 64, 1883 (1990).CrossRefADSGoogle Scholar
  43. 43.
    A. D. Bandrauk and M. L. Sink, “Photodissociation in intense laser fields: Predissociation analogy,” J. Chem. Phys. 74, 1110 (1981).CrossRefADSGoogle Scholar
  44. 44.
    H. Niikura, P. B. Corkum, and D. M. Villeneuve, “Controlling vibrational wave packet motion with intense modulated laser fields,” Phys. Rev. Lett. 90, 203601 (2003).CrossRefADSGoogle Scholar
  45. 45.
    T. Seideman, M. Y. Ivanov, and P. B. Corkum, “The role of electron localization in intense field molecular ionization,” Phys. Rev. Lett. 75, 2819 (1995).CrossRefADSGoogle Scholar
  46. 46.
    E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76, 4140 (1996).CrossRefADSGoogle Scholar
  47. 47.
    M. Y. Ivanov, T. Seideman, and P. B. Corkum, “Explosive ionization of molecules in intense laser fields,” Phys. Rev. A 54, 1541 (1996).CrossRefADSGoogle Scholar
  48. 48.
    T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).CrossRefADSGoogle Scholar
  49. 49.
    A. Zavriyev, P. H. Bucksbaum, J. Squier, and F. Saline, “Light-induced vibrational structure in \({\rm H}_2^+\) and \({\rm D}_2^+\) in intense laser fields,” Phys. Rev. Lett. 70, 1077 (1993).CrossRefADSGoogle Scholar
  50. 50.
    T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behaviour of \({\rm H}_2\) and \({\rm D}_2\) in a strong, femtosecond, titanium:sapphire laser field,” J. Phys . B 30, 2167 (1997).CrossRefADSGoogle Scholar
  51. 51.
    L. J. Frasinski, K. Codling, P. Hatherly, J. Barr, I. N. Ross, and W. T. Toner, “Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser,” Phys. Rev. Lett. 58, 2424 (1987).CrossRefADSGoogle Scholar
  52. 52.
    K. Boyer, T. S. Luk, J. C. Solem, and C. K. Rhodes, “Kinetic energy distributions of ionic fragments produced by subpicosecond multiphoton ionization of \({\rm N}_2\),” Phys. Rev. A 39, 1186 (1989).CrossRefADSGoogle Scholar
  53. 53.
    D. T. Strickland, Y. Beaudoin, P. Dietrich, and P. B. Corkum, “Optical studies of inertially confined molecular iodine ions,” Phys. Rev. Lett. 68, 2755 (1992).CrossRefADSGoogle Scholar
  54. 54.
    D. Normand, L. A. Lompre, and C. Cornaggia, “Laser-induced molecular alignment probed by a double-pulse experiment,” J. Phys . B 25, L497 (1992).CrossRefADSGoogle Scholar
  55. 55.
    V. R. Bhardwaj, S. A. Aseyev, M. Mehendale, G. L. Yudin, D. M. Villeneuve, D. M. Rayner, M. Y. Ivanov, and P. B. Corkum, “Few cycle dynamics of multiphoton double-ionisation,” Phys. Rev. Lett. 86, 3522 (2001).CrossRefADSGoogle Scholar
  56. 56.
    H. Niikura, F. Légaré, R. Hasbani, M. Y. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Probing molecular dynamics with attosecond resolution using correlated wave packet pairs,” Nature 421, 826 (2003).CrossRefADSGoogle Scholar
  57. 57.
    G. L. Yudin and M. Y. Ivanov, “Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit,” Phys. Rev. A 63, 033404 (2001).CrossRefADSGoogle Scholar
  58. 58.
    F. Légaré, I. Litvinyuk, P. Dooley, F. Quéré, A. D. Bandrauk, D. M. Villeneuve, and P. B. Corkum, “Time-resolved double-ionization with few cycle laser pulses,” Phys. Rev. Lett. 91, 093002 (2003).CrossRefADSGoogle Scholar
  59. 59.
    E. P. Kanter, P. J. Cooney, D. S. Gemmell, K.-O. Groeneveld, W. J. Pietsch, A. J. Ratkowski, Z. Vager, and B. J. Zabransky, “Role of excited electronic states in the interactions of fast (MeV) molecular ions with solids and gases,” Phys. Rev. A 20, 834 (1979).CrossRefADSGoogle Scholar
  60. 60.
    Z. Vager, R. Naaman, and E. P. Kanter, “Coulomb explosion imaging of small molecules,” Science 244, 426 (1989).CrossRefADSGoogle Scholar
  61. 61.
    M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight, “Role of the intramolecular phase in high-harmonic generation,” Phys. Rev. Lett. 88, 183903 (2002).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiromichi Niikura
    • 1
    Email author
  • V.R. Bhardwaj
    • 2
  • F. Légaré
    • 1
  • I.V. Litvinyuk
    • 1
  • P.W. Dooley
    • 1
  • D.M. Rayner
    • 1
  • M. Yu Ivanov
    • 1
  • P.B. Corkum
    • 1
  • D.M. Villeneuve
    • 1
  1. 1.Steacie Institute for Molecular SciencesNational Research Council of CanadaOttawa K1A 0R6Canada
  2. 2.Physics DepartmentUniversity of OttawaResearch Council of CanadaOttawa K1N 6N5Canada

Personalised recommendations