Wave Collapse in Nonlinear Optics

  • E. A. Kuznetsov
Part of the Topics in Applied Physics book series (TAP, volume 114)


In this chapter, we give a brief review of collapses in nonlinear optics with and emphasis on their classification (weak, strong, and black holes), correspondence between solitons and collapses and effects of the group velocity dispersion as well.


Wave Packet Nonlinear Optic Soliton Solution Group Velocity Dispersion Langmuir Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.E. Zakharov, Collapse of Langmuir waves, Zh. Eksp. Teor. Fiz. 62, 1745–1751 (1972)[Sov. Phys. JETP 35, 908–914 (1972)].Google Scholar
  2. 2.
    V.E. Zakharov, Collapse and self-focusing of Langmuir waves, in: Handbook of Plasma Physics, Vol. 2, Basic Plasma Physics, eds. A.A. Galeev, R.N. Sudan, Elsevier, North-Holland, (1984), pp. 81–121.Google Scholar
  3. 3.
    J.J. Rasmussen, K. Rypdal, Blow-up in nonlinear Schrodinger equations: I. A general review, Phys. Scr. 33, 481–504 (1986).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    E.A. Kuznetsov, Wave collapse in plasmas and fluids, Chaos, 6, 381–390 (1996).Google Scholar
  5. 5.
    L. Berge, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303, 259 (1998).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G.A. Askaryan, Effect of the gradient of a strong electromagnetic beam on electrons and atoms, Zh. Eksp. Teor. Fiz. 42, 1567 (1961) (Sov. Phys. JETP 15, 1088–1090 (1962)].Google Scholar
  7. 7.
    V. I. Talanov, On self-focusing of the wave beams in nonlinear media, ZhETF Pis’ma 2, 218–222 (1965) [JETP. Lett. 2, 138–142 (1965)].ADSGoogle Scholar
  8. 8.
    V. I. Talanov, About selffocusing of light in cubic media, ZhETF Pis’ma 11, 303–305 (1970) [JETP Lett. 11, 199–201 (1970)].ADSGoogle Scholar
  9. 9.
    R.Y. Chiao, F. Garmire, C.H. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13, 479–482 (1964).CrossRefADSGoogle Scholar
  10. 10.
    E.L. Dawes, J.H. Marburger, Computer studies in self-focusing, Phys. Rev. 179 862–868 (1969).CrossRefADSGoogle Scholar
  11. 11.
    C.Sulem, P.L. Sulem, The Nonlinear Schrodinger Equation, Springer-Verlag, New York (1999).Google Scholar
  12. 12.
    E.P. Gross, Structure of quantized vortex, Nuovo Cim., 20 454–461 (1961); L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13, 451–454 (1961).Google Scholar
  13. 13.
    V. Flambaum, E. Kuznetsov, Nonlinear dynamics of ultra cold gas, in: Proc. NATO ARW ”Singularities in Fluids, Optics and Plasmas,” Eds. E. Caflisch and G. Papanicolaou, Kluwer (1993), pp. 197–203.Google Scholar
  14. 14.
    L. Berge, J.J. Rasmussen, Collapsing dynamics of attractive Bose–Einstein condensates, Phys. Lett. A 304, 136–142 (2002).ADSMathSciNetGoogle Scholar
  15. 15.
    V.E. Zakharov, E.A. Kuznetsov, Quasi-classical theory of three-dimensional wave collapse, Sov. Phys. JETP 64, 773–780 (1986).Google Scholar
  16. 16.
    V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].Google Scholar
  17. 17.
    A. Hasegawa, F. Tappert, Transmission of stationary nonlineat optical pulses in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett., 23 142–144 (1973).CrossRefADSGoogle Scholar
  18. 18.
    Yu.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, Amsterdam (2003).Google Scholar
  19. 19.
    E. A. Kuznetsov, A.M. Rubenchik, V.E. Zakharov, Soliton stability in plasmas and fluids, Phys. Rep. 142, 103–165 (1986).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    N.G. Vakhitov, A.A. Kolokolov, Stationary solutions of the wave equation in media with nonlinearity saturation, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1020 (1973) [Radiophys. Quantum Electron. 16, 783 (1975)].Google Scholar
  21. 21.
    E.A. Kuznetsov, Hard soliton excitation: Stability investigation, Zh. Eksp. Teor. Fiz. 116, 299–317 (1999) [JETP, 89, 163–172 (1999)].Google Scholar
  22. 22.
    E.A. Kuznetsov, S.K. Turitsyn, Talanov transformations for selffocusing problems and instability of waveguides. Phys Lett A 112, 273–275 (1985).CrossRefADSGoogle Scholar
  23. 23.
    E.A. Kuznetsov, S.L. Musher, Effect of the collapse of sound waves on the structure of the collisionless shocks in a magnetized plasma, Sov. Phys. JETP 64, 947–955(1986).Google Scholar
  24. 24.
    S.N. Vlasov, V.A. Petritshev, V.I. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments), Radiophys. Quant. Electr. 14, 1062–1070 (1971).CrossRefADSGoogle Scholar
  25. 25.
    S.N. Vlasov, V.I. Talanov, private communication (1984).Google Scholar
  26. 26.
    M.I. Weinstein, Nonlinear Schrodinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 567–576 (1983).zbMATHGoogle Scholar
  27. 27.
    G.M. Fraiman, Asymptotic stability of manifold of self-similar solutions in self-focusing, Zh. Eksp. Teor. Fiz. 88, 390 (1985) [Sov. Phys. JETP 61, 228 (1985)].ADSMathSciNetGoogle Scholar
  28. 28.
    V.E. Zakharov, V.F. Shvets, Nature of wave collapse in the critical case, JETP Lett. 47, 275–278 (1988).ADSGoogle Scholar
  29. 29.
    M.J. Landman, G.C. Papanicolaou, C. Sulem et al., Rate of blowup for solutions of the nonlinear Schrodinger equation at critical dimension, Phys. Rev. A 38, 3837–3843 (1988).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    A.M. Smirnov, G.M. Fraiman , The interaction representation in the self-focusing theory, Physica D 52, 2–15 (1992).CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    L. Berge, D. Pesme, Time-dependent solutions of wave collapse, Phys. Lett. A 166, 116–122 (1992).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    S.K. Turitsyn, Nonstable solitons and sharp criteria for wave collapse, Phys. Rev. E 47, R1316 (1993).MathSciNetGoogle Scholar
  33. 33.
    E. A. Kuznetsov, J.J. Rasmussen , K. Rypdal et al., Sharper criteria of the wave collapse, Physica D, 87, 273–284 (1995).CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    O.B. Budneva, V.E. Zakharov, V.S. Synakh, Certain models for wave collapse, Sov. J. Plasma Phys. 1, 335–338 (1975).Google Scholar
  35. 35.
    V.E. Zakharov , E.A. Kuznetsov, S.L. Musher, Quasiclassical regime of a three-dimensional wave collapse, JETP Lett., 41, 154–156 (1984).ADSGoogle Scholar
  36. 36.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd edi., Pergamon, New York (1977).Google Scholar
  37. 37.
    S.N. Vlasov, L.V. Piskunova, V.I. Talanov, Talk on the IV International Workshop on Nonlinear and Turbulent Processes in Physics, Kiev, October 9–22, 1989).Google Scholar
  38. 38.
    V.E. Zakharov, N.E. Kosmatov, V.F. Shvets, Ultra-strong wave collapse, JETP Lett. 49, 492–495 (1989).ADSGoogle Scholar
  39. 39.
    N.E. Kosmatov, V.F. Shvets, V.E. Zakharov, Computer simulation of wave collapses in the nonlinear Schrodinger equation, Physica D 52, 16–35 (1991).zbMATHCrossRefADSGoogle Scholar
  40. 40.
    L. Berge, E.A. Kuznetsov, J.J. Rasmussen, Defocusing regimes of nonlinear waves with negative dispersion, Phys Rev E, 53, R1340–1343 (1996).CrossRefADSGoogle Scholar
  41. 41.
    E.A. Kuznetsov, Integral criteria of wave collapses, Izv. VUZ. Radiofiz., vol. XLVI, 342–359 (2003) [Radiophys Quant Electron., 46, 307–322 (2003)].Google Scholar
  42. 42.
    L. Berge, K. Germaschewski, R. Grauer et al., Hyperbolic shock waves of the optical self-focusing with normal group-velocity dispersion, Phys. Rev. Lett. 89, 153902 (2002).CrossRefADSGoogle Scholar
  43. 43.
    N.A. Zharova, A.G. Litvak, V.A. Mironov, On the collapse of wave packets in a medium with normal group velocity dispersion, JETP Lett., 75, 539–542 (2002).CrossRefADSGoogle Scholar
  44. 44.
    N.A. Zharova, A.G. Litvak, V.A. Mironov, The structural features of wave collapse in medium with normal group velocity dispersion, JETP, 96, 643 (2003).CrossRefADSGoogle Scholar
  45. 45.
    G. Fibich, W. Ren, X.-P. Wang, Numerical simulations of self-focusing of ultrafast laser pulses, Phys. Rev. E 67, 056603 (9 pp) (2003).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  1. 1.L.D. Landau Institute for Theoretical Physics

Personalised recommendations