Self-focusing: Past and Present pp 547-572

Part of the Topics in Applied Physics book series (TAP, volume 114)

Self-Focusing and Solitons in Photorefractive Media

  • E. DelRe
  • M. Segev

Abstract

We describe the basic physical mechanisms supporting the formation of spatial solitons in photorefractive crystals, and provide an up-to-date account of the developments in the field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Segev, G. Stegeman: Self-trapping of optical beams: Spatial solitons, Phys. Today 51, 42–48 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Segev: Optical spatial solitons, Opt. Quant. Electron. 30, 503–533 (1998).CrossRefGoogle Scholar
  3. 3.
    G.I. Stegeman, M. Segev: Optical spatial solitons and their interactions: Universality and diversity, Science 286, 1518–1523 (1999).CrossRefGoogle Scholar
  4. 4.
    See Chapter 4 by E. DelRe, B. Crosignani, P. Di Porto, and Chapter 5 by M. Segev, D.N. Christodoulides, in S. Trillo and W. Torruellas (Eds.), Spatial Solitons (Springer-Verlag, Berlin 2001).Google Scholar
  5. 5.
    G.I. Stegeman, D.N. Christodoulides, and M. Segev: Optical spatial solitons: historical perspectives, Millennium Issue of the IEEE J. Selected Topics Quant. Electron. 6, 1419–1427 (2000).CrossRefGoogle Scholar
  6. 6.
    See Chapter 11 by E. DelRe, M. Segev, D.N. Christodoulides, B. Crosignani, and G. Salamo in P. Gunter and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 2006).Google Scholar
  7. 7.
    P. Yeh, Introduction to photorefractive nonlinear optics (Wiley, New York, 1993).Google Scholar
  8. 8.
    L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, (Claredon Press, Oxford, 1996).Google Scholar
  9. 9.
    M. Segev, B. Crosignani, A. Yariv et al.: Spatial solitons in photorefractive media, Phys. Rev. Lett 68, 923–926 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    B. Crosignani, M. Segev, D. Engin et al.: Self-trapping of optical beams in photorefractive media, J. Opt. Soc. Am B 10, 446–453 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    G.C. Duree, J.L. Shultz, G.J. Salamo et al.: Observation of self-trapping of an optical beam due to the photorefractive effect, Phys. Rev. Lett 71, 533–536 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    M. Segev, B. Crosignani, P. Diporto et al.: Stability of photorefractive spatial solitons, Opt. Lett. 19, 1296–1298 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    G. Duree, G. Salamo, M. Segev et al.: Dimensionality and size of photorefractive spatial solitons, Opt. Lett. 19, 1195–1197 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    D.N. Christodoulides, M.I. Carvalho: Compression, self-bending, and collapse of gaussian beams in photorefractive crystals, Opt. Lett. 19, 1714–1716 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M.D.I. Castillo, P.A.M. Aguilar, J.J. Sanchez-Mondragon et al.: Spatial solitons in photorefractive Bi12Tio20 with drift mechanism of nonlinearity, Appl. Phys. Lett. 64, 408–410 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    M. Segev, G.C. Valley, B. Crosignani et al.: Steady-state spatial screening solitons in photorefractive materials with external applied-field, Phys. Rev. Lett. 73, 3211–3214 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    S.R. Singh, D.N. Christodoulides: Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions, Opt. Commun. 118, 569–576 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    D.N. Christodoulides, M.I. Carvalho: Bright, dark, and gray spatial soliton states in photorefractive media, J. Opt. Soc. Am. B 12, 1628–1633 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    M. Segev, M.F. Shih, G.C. Valley: Photorefractive screening solitons of high and low intensity, J. Opt. Soc. Am. B 13, 706–718 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    M.F. Shih, M. Segev, G.C. Valley et al.: Observation of two-dimensional steady-state photorefractive screening solitons, Electron. Lett. 31, 826–827 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Shih, P. Leach, M. Segev et al.: Two-dimensional steady-state photorefractive screening solitons, Opt. Lett. 21, 324–326 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    K. Kos, H.X. Meng, G. Salamo et al.: One-dimensional steady-state photorefractive screening solitons, Phys. Rev.E 53, R4330–R4333 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    E. DelRe, A. Ciattoni, B. Crosignani, et al.: Approach to space-charge field description in photorefractive crystals, J. Opt. Soc. Am. B 15, 1469–1475 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    M.I. Carvalho, S.R. Singh, D.N. Christodoulides: Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals, Opt. Commun. 120, 311–315 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    E. DelRe, A. Ciattoni, E. Palange: Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior, Phys. Rev. E 73, 017601-1–017601-4 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    M. Segev, A.J. Agranat: Spatial solitons in centrosymmetric photorefractive media, Opt.Lett. 22, 1299–1301 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    E. DelRe, B. Crosignani, M. Tamburrini et al.: One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate, Opt. Lett. 23, 421–423 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    E. DelRe, A. D’Ercole, A.J. Agranat: Emergence of linear wave segments and predictable traits in saturated nonlinear media, Opt. Lett. 28, 260–262 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    Z. Chen, M. Mitchell, M.F. Shih et al.: Steady-state dark photorefractive screening solitons, Opt. Lett. 21, 629–631 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    S. Lan, M.F. Shih, M. Segev: Self-trapping of one-dimensional and two-dimensional optical beams and induced waveguides in photorefractive KNbO3, Opt. Lett. 22, 1467–1469 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    M. Chauvet, S.A. Hawkins, G.J. Salamo et al.: Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths, Appl. Phys. Lett. 70, 2499–2501 (1997).ADSCrossRefGoogle Scholar
  32. 32.
    E. DelRe, M. Tamburrini, M. Segev et al.: Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate, Appl. Phys. Lett. 73, 16–18 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    E. Fazio, W. Ramadan, A. Belardini et al.: (2+1)-dimensional soliton formation in photorefractive Bi12SiO20 crystals, Phys. Rev. E 67, 026611 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    W.L. She, K.K. Lee, W.K. Lee: Observation of two-dimensional bright photovoltaic spatial solitons, Phys. Rev. Lett. 83, 3182–3185 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    T. Carmon, R. Uzdin, C. Pigier et al.: Rotating propeller solitons, Phys. Rev. Lett. 87, 143901 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    W. Krolikowski, E.A. Ostrovskaya, C. Weilnau et al.: Observation of dipole-mode vector solitons, Phys. Rev. Lett. 85, 1424–1427 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    T. Carmon, C. Anastassiou, S. Lan et al.: Observation of two-dimensional multimode solitons, Opt. Lett. 25, 1113–1115 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    M. Mitchell, Z.G. Chen, M.F. Shih et al.: Self-trapping of partially spatially incoherent light, Phys. Rev. Lett. 77, 490–493 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    M. Mitchell, M. Segev: Self-trapping of incoherent white light, Nature 387, 880–883 (1997).ADSCrossRefGoogle Scholar
  40. 40.
    G. Duree, M. Morin, G. Salamo et al.: Dark photorefractive spatial solitons and photorefractive vortex solitons, Phys. Rev. Lett. 74, 1978–1981 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    Z. Chen, M.F. Shih, M. Segev et al.: Steady-state vortex-screening solitons formed in biased photorefractive media, Opt. Lett. 22, 1751–1753 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    Z. Chen, M. Segev, D.W. Wilson et al.: Self-trapping of an optical vortex by use of the bulk photovoltaic effect, Phys. Rev. Lett. 78, 2948–2951 (1997).ADSCrossRefGoogle Scholar
  43. 43.
    Z. Chen, M. Mitchell, M. Segev et al.: Self-trapping of dark incoherent light beams, Science 280, 889–892 (1998).ADSCrossRefGoogle Scholar
  44. 44.
    A.A. Zozulya, D.Z. Anderson, A.V. Mamaev et al.: Self-focusing and soliton formation in media with anisotropic nonlocal material response, Europhys. Lett. 36, 419–424 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    B. Crosignani, P. DiPorto, A. Degasperis et al.: Three-dimensional optical beam propagation and solitons in photorefractive crystals, J. Opt. Soc. Am. B 14, 3078–3090 (1997).ADSCrossRefGoogle Scholar
  46. 46.
    S. Gatz, J. Herrmann: Anisotropy, nonlocality, and space-charge field displacement in (2+1)-dimensional self-trapping in biased photorefractive crystals, Opt. Lett. 23, 1176–1178 (1998).ADSCrossRefGoogle Scholar
  47. 47.
    M.R. Belic, D. Vujic, A. Stepken et al.: Isotropic versus anisotropic modeling of photorefractive solitons, Phys. Rev. E 65, 066610 (2002).ADSCrossRefGoogle Scholar
  48. 48.
    G.F. Calvo, F. Agullo-Lopez, M. Carrascosa, et al.: Two-dimensional soliton-induced refractive index change in photorefractive crystals, Opt. Commun. 227, 193–202 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    E. DelRe, A. Ciattoni, A.J. Agranat: Anisotropic charge displacement supporting isolated photorefractive optical needles, Opt. Lett. 26, 908–910 (2001).ADSCrossRefGoogle Scholar
  50. 50.
    E. DelRe, G. De Masi, A. Ciattoni et al.: Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons, Appl. Phys. Lett. 85, 5499–5501 (2004).ADSCrossRefGoogle Scholar
  51. 51.
    C. Dari-Salisburgo, E. DelRe, E. Palange Molding and stretched evolution of optical solitons in cumulative nonlinearities Phys. Rev. Lett. 91, 263903 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    C. Denz, W. Krolikowski, J. Petter et al.: Dynamics of formation and interaction of photorefractive screening solitons, Phys. Rev. E 60, 6222–6225 (1999).ADSCrossRefGoogle Scholar
  53. 53.
    G.M. Tosi-Beleffi, M. Presi, E. DelRe et al.: Stable oscillating nonlinear beams in square-wave-biased photorefractives, Opt. Lett. 25, 1538–1540 (2000).ADSCrossRefGoogle Scholar
  54. 54.
    G.M. Tosi-Beleffi, F. Curti, D. Boschi et al.: Soliton-based Y-branch in photorefractive crystals induced through dispersion-shifted optical fiber, Opt. Lett. 28, 1561–1563 (2003).ADSCrossRefGoogle Scholar
  55. 55.
    C.A. Fuentes-Hernandez, A.V. Khomenko: Beam collapse and polarization self-modulation in an optically active photorefractive crystal in an alternating electric field, Phys. Rev. Lett. 83, 1143–1146 (1999).ADSCrossRefGoogle Scholar
  56. 56.
    M.N. Frolova, S.M. Shandarov, M.V. Borodin: Self-action of a light beam in a photorefractive crystal in an alternating electric field upon synchronous intensity modulation, Quantum. Electron. 32, 45–48 (2002).CrossRefADSGoogle Scholar
  57. 57.
    D. Wolfersberger, N. Fressengeas, J. Maufoy et al.: Self-focusing of a single laser pulse in a photorefractive medium, Phys. Rev. E 62, 8700–8704 (2000).ADSCrossRefGoogle Scholar
  58. 58.
    D. Wolfersberger, F. Lhomme, N. Fressengeas et al.: Simulation of the temporal behavior of one single laser pulse in a photorefractive medium, Opt. Commun. 222, 383–391 (2003).ADSCrossRefGoogle Scholar
  59. 59.
    E. DelRe, E. Palange: Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons, J. Opt. Soc. Am. B 23, 2323–2327 (2006).ADSCrossRefGoogle Scholar
  60. 60.
    N. Fressengeas, J. Maufoy, G. Kugel: Temporal behavior of bidimensional photorefractive bright spatial solitons, Phys. Rev. E 54, 6866–6875 (1996).ADSCrossRefGoogle Scholar
  61. 61.
    N. Fressengeas, J. Maufoy, D. Wolfersberger et al.: Experimental transient self-focusing in Bi12TiO20 crystal, Ferroelectrics 202, 193–202 (1997).CrossRefGoogle Scholar
  62. 62.
    N. Fressengeas, D. Wolfersberger, J. Maufoy et al.: Build-up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons, Opt. Commun 145, 393–400 (1998).ADSCrossRefGoogle Scholar
  63. 63.
    N. Fressengeas, D. Wolfersberger, J. Maufoy et al.: Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20, J. Appl. Phys 85, 2062–2067 (1999).ADSCrossRefGoogle Scholar
  64. 64.
    D. Wolfersberger, N. Fressengeas, J. Maufoy et al.: Experimental study of the behaviour of narrow nanosecond laser pulses in biased photorefractive Bi12TiO20, Ferroelectrics 223, 381–388 (1999).CrossRefGoogle Scholar
  65. 65.
    J. Maufoy, N. Fressengeas, D. Wolfersberger et al.: Simulation of the temporal behavior of soliton propagation in photorefractive media, Phys. Rev. E 59, 6116–6121 (1999).ADSCrossRefGoogle Scholar
  66. 66.
    G.C. Valley, M. Segev, B. Crosignani et al.: Dark and bright photovoltaic spatial solitons, Phys. Rev. A 50, R4457–R4460 (1994).ADSCrossRefGoogle Scholar
  67. 67.
    M. Taya, M.C. Bashaw, M.M. Fejer et al.: Observation of dark photovoltaic spatial solitons. Phys. Rev. A 52, 3095–3100 (1995).ADSCrossRefGoogle Scholar
  68. 68.
    M. Segev, G.C. Valley, M.C. Bashaw et al.: Photovoltaic spatial solitons, J. Opt. Soc. Am. B 14, 1772–1781 (1997).ADSCrossRefGoogle Scholar
  69. 69.
    B. Crosignani, E. DelRe, P. Di Porto et al.: Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media, Opt. Lett. 23, 912–914 (1998).ADSCrossRefGoogle Scholar
  70. 70.
    B. Crosignani, A. Degasperis, E. DelRe et al.: Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction, Phys. Rev. Lett. 82, 1664–1667 (1999).ADSCrossRefGoogle Scholar
  71. 71.
    M. Chauvet, S.A. Hawkins, G.J. Salamo et al.: Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe, Opt. Lett. 21, 1333–1335 (1996).ADSCrossRefGoogle Scholar
  72. 72.
    T. Schwartz, Y. Ganor, T. Carmon et al.: Photorefractive solitons and light-induced resonance control in semiconductor CdZnTe, Opt. Lett. 27, 1229–1231 (2002).ADSCrossRefGoogle Scholar
  73. 73.
    E. DelRe, M. Tamburrini, M. Segev et al.: Spontaneous self-trapping of optical beams in metastable paraelectric crystals, Phys. Rev. Lett. 83, 1954–1957 (1999).ADSCrossRefGoogle Scholar
  74. 74.
    M.F. Shih, F.W. Sheu: Photorefractive polymeric optical spatial solitons, Opt. Lett. 24, 1853–1855 (1999).ADSCrossRefGoogle Scholar
  75. 75.
    E. DelRe, M. Tamburrini, G. Egidi: Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.Google Scholar
  76. 76.
    J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar et al.: Self-focusing in photorefractive BaTiO3 crystal under external DC electric field, Opt. Quantum Electron. 30, 829–834 (1998).CrossRefGoogle Scholar
  77. 77.
    Z.G. Chen, M. Asaro, O. Ostroverkhova, et al.: Self-trapping of light in an organic photorefractive glass, Opt. Lett. 28, 2509–2511 (2003).ADSCrossRefGoogle Scholar
  78. 78.
    M. Chauvet, A. Guo, G. Fu and G. Salamo, Electrically switched photoinduced waveguide in unpoled strontium barium niobate, J. Appl. Phys. 99, 113107-1–113107-5 (2006).ADSCrossRefGoogle Scholar
  79. 79.
    M.D. Castillo, J.J. Sanchezmondragon, S.I. Stepanov et al.: Probe beam wave-guiding induced by spatial dark solitons in photorefractive Bi12TiO2 crystal, Rev. Mex. Fis 41, 1–10 (1995).Google Scholar
  80. 80.
    M.F. Shih, Z.G. Chen, M. Segev et al. Incoherent collisions between one-dimensional steady-state photorefractive screening solitons, Appl. Phys. Lett. 69, 4151–4153 (1996).ADSCrossRefGoogle Scholar
  81. 81.
    M.F. Shih, M. Segev: Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons, Opt. Lett. 21, 1538–1540 (1996).ADSCrossRefGoogle Scholar
  82. 82.
    W. Krolikowski, S.A. Holmstrom: Fusion and birth of spatial solitons upon collision, Opt. Lett. 22, 369–371 (1997).ADSCrossRefGoogle Scholar
  83. 83.
    W. Krolikowski, B. Luther-Davies, C. Denz et al.: Annihilation of photorefractive solitons, Opt. Lett. 23, 97–99 (1998).ADSCrossRefGoogle Scholar
  84. 84.
    H.X. Meng, G. Salamo, M.F. Shih et al.: Coherent collisions of photorefractive solitons, Opt. Lett. 22, 448–450 (1997).ADSCrossRefGoogle Scholar
  85. 85.
    A.V. Mamaev, M. Saffman, A.A. Zozulya: Phase-dependent collisions of (2+1)- dimensional spatial solitons, J. Opt. Soc. Am. B 15, 2079–2082 (1998).ADSCrossRefGoogle Scholar
  86. 86.
    M.F. Shih, M. Segev, G. Salamo: Three-dimensional spiraling of interacting spatial solitons, Phys. Rev. Lett. 78, 2551–2554 (1997).ADSCrossRefGoogle Scholar
  87. 87.
    A.V. Buryak, Y.S. Kivshar, M.F. Shih et al.: Induced coherence and stable soliton spiraling, Phys. Rev. Lett. 82, 81–84 (1999).ADSCrossRefGoogle Scholar
  88. 88.
    E. DelRe, S. Trillo, A.J. Agranat: Collisions and inhomogeneous forces between solitons of different dimensionality, Opt. Lett. 25, 560–562 (2000).ADSCrossRefGoogle Scholar
  89. 89.
    E. DelRe, A. Ciattoni, B. Crosignani et al.: Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals, J. Nonlinear. Opt. Phys. 8, 1–20 (1999).CrossRefGoogle Scholar
  90. 90.
    D. Kip, C. Herden, M. Wesner: All-optical signal routing using interaction of mutually incoherent spatial solitons, Ferroelectrics 274, 135–142 (2002).Google Scholar
  91. 91.
    C. Rotschild, O. Cohen, O. Manela et al.: Interactions between spatial screening solitons propagating in opposite directions, J. Opt. Soc. Am. B 21, 1354–1357 (2004).ADSCrossRefGoogle Scholar
  92. 92.
    D.N. Christodoulides, S.R. Singh, M.I. Carvalho et al.: Incoherently coupled soliton pairs in biased photorefractive crystals, Appl. Phys. Lett. 68, 1763–1765 (1996).ADSCrossRefGoogle Scholar
  93. 93.
    Z.G. Chen, M. Segev, T.H. Coskun et al.: Observation of incoherently coupled photorefractive spatial soliton pairs, Opt. Lett. 21, 1436–1438 (1996).ADSCrossRefGoogle Scholar
  94. 94.
    Z. Chen, M. Segev, T. Coskun et al.: Coupled photorefractive spatial soliton pairs, J. Opt. Soc. Am. B 14, 3066–3077 (1997).ADSCrossRefGoogle Scholar
  95. 95.
    Z. Chen, M. Segev, T. Coskun et al.: Observation of incoherently coupled dark-bright photorefractive spatial soliton pairs, Opt. Lett. 21, 1821 (1996).ADSCrossRefGoogle Scholar
  96. 96.
    M. Mitchell, M. Segev D.N. Christodoulides: Observation of multi-hump multi-mode solitons, Phys. Rev. Lett. 80, 4657–4660 (1998).MATHADSCrossRefGoogle Scholar
  97. 97.
    C. Anastassiou, M. Segev, K. Steiglitz et al.: Energy-exchange interactions between colliding vector solitons, Phys. Rev. Lett. 83, 2332–2335 (1999).ADSCrossRefGoogle Scholar
  98. 98.
    C. Anastassiou, J.W. Fleischer, T. Carmon et al.: Information transfer through cascaded collisions of vector solitons, Opt. Lett. 26, 1498 (2001).ADSCrossRefGoogle Scholar
  99. 99.
    W. Krolikowski, N. Akhmediev, B. Luther-Davies: Collision-induced shape transformations of partially coherent solitons, Phys. Rev. E 59, 4654–4658 (1999).ADSCrossRefGoogle Scholar
  100. 100.
    D.N. Christodoulides, T.H. Coskun, M. Mitchell et al.: Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett. 78, 646–649 (1997).ADSCrossRefGoogle Scholar
  101. 101.
    M. Mitchell, M. Segev, T.H. Coskun et al.: Theory of self-trapped spatially incoherent light beams, Phys. Rev. Lett. 79, 4990–4993 (1997).ADSCrossRefGoogle Scholar
  102. 102.
    D.N. Christodoulides, T. Coskun, M. Mitchell et al.: Theory of dark incoherent solitons, Phys. Rev. Lett. 80, 5113–5116 (1998).ADSCrossRefGoogle Scholar
  103. 103.
    V.V. Shkunov, D.Z. Anderson: Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media, Phys. Rev. Lett. 81, 2683–2686 (1998).ADSCrossRefGoogle Scholar
  104. 104.
    T.H. Coskun, D.N. Christodoulides, Y.R. Kim et al.: Bright spatial solitons on a partially incoherent background, Phys. Rev. Lett. 84, 2374–2377 (2000).ADSCrossRefGoogle Scholar
  105. 105.
    E.D. Eugenieva, D.N. Christodoulides, M. Segev: Elliptic incoherent solitons in saturable nonlinear media, Opt. Lett. 25, 972–974 (2000).ADSCrossRefGoogle Scholar
  106. 106.
    O. Katz, T. Carmon, T. Schwartz et al.: Observation of elliptic incoherent spatial solitons, Opt. Lett. 29, 1248–1250 (2004).ADSCrossRefGoogle Scholar
  107. 107.
    T.H. Coskun, A.G. Grandpierre, D.N. Christodoulides et al.: Coherence enhancement of spatially incoherent light beams through soliton interactions, Opt. Lett. 25, 826–828 (2000).ADSCrossRefGoogle Scholar
  108. 108.
    T.H. Coskun, D.N. Christodoulides, M. Mitchell et al.: Dynamics of incoherent bright and dark self-trapped beams and their coherence properties in photorefractive crystals, Opt. Lett. 23, 418–420 (1998).ADSCrossRefGoogle Scholar
  109. 109.
    M. Soljacic, M. Segev, T. Coskun et al.: Modulation instability of incoherent beams in noninstantaneous nonlinear media, Phys. Rev. Lett. 84, 467–470 (2000).ADSCrossRefGoogle Scholar
  110. 110.
    D. Kip, M. Soljacic, M. Segev et al.: Modulation instability and pattern formation in spatially incoherent light beams, Science 290, 495 (2000).ADSCrossRefGoogle Scholar
  111. 111.
    C. Anastassiou, M. Soljacic, M. Segev et al.: Eliminating the transverse instabilities of Kerr solitons, Phys. Rev. Lett. 85, 4888–4891 (2000).ADSCrossRefGoogle Scholar
  112. 112.
    C.C. Jeng, M. Shih, K. Motzek et al.: Partially incoherent optical vortices in self-focusing nonlinear media, Phys. Rev. Lett. 92, 043904 (2004).ADSCrossRefGoogle Scholar
  113. 113.
    H. Buljan, M. Segev, M. Soljacic et al.: White light solitons, Opt. Lett. 28, 1239–1241 (2003).ADSCrossRefGoogle Scholar
  114. 114.
    H. Buljan, A. Siber, M. Soljacic et al.: White light solitons in logarithmically saturable nonlinear media, Phys. Rev. E 68, 036607 (2003).ADSMathSciNetCrossRefGoogle Scholar
  115. 115.
    H. Buljan, A. Siber, M. Soljacic et al.: Propagation of incoherent “white” light and modulation instability in non-instantaneous nonlinear media, Phys. Rev. E 66, R35601 (2002).ADSCrossRefGoogle Scholar
  116. 116.
    T. Schwartz, T. Carmon, H. Buljan et al.: Spontaneous pattern formation with incoherent “white” light, Phys. Rev. Lett. 93, 223901-1–223901-4 (2004).ADSGoogle Scholar
  117. 117.
    M. Morin, G. Duree, G. Salamo et al.: Wave-guides formed by quasi-steady-state photorefractive spatial solitons, Opt. Lett. 20, 2066–2068 (1995).ADSCrossRefGoogle Scholar
  118. 118.
    M.F. Shih, M. Segev, G. Salamo: Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons, Opt. Lett. 21, 931–933 (1996).ADSCrossRefGoogle Scholar
  119. 119.
    M. Taya, M.C. Bashaw, M.M. Fejer et al.: Y-junctions arising from dark-soliton propagation in photovoltaic media, Opt. Lett. 21, 943–945 (1996).ADSCrossRefGoogle Scholar
  120. 120.
    Z.G. Chen, M. Mitchell, M. Segev: Steady-state photorefractive soliton-induced Y-junction waveguides and high-order dark spatial solitons, Opt. Lett. 21, 716–718 (1996).ADSCrossRefGoogle Scholar
  121. 121.
    J. Petter, C. Denz: Guiding and dividing waves with photorefractive solitons, Opt. Commun. 188, 55–61 (2001).ADSCrossRefGoogle Scholar
  122. 122.
    M. Wesner, C. Herden, D. Kip et al.: Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides, Opt. Commun. 188, 69–76 (2001).ADSCrossRefGoogle Scholar
  123. 123.
    S. Lan, E. DelRe, Z.G. Chen et al.: Directional coupler with soliton-induced waveguides, Opt. Lett. 24, 475–477 (1999).ADSCrossRefGoogle Scholar
  124. 124.
    S. Lan, M.F. Shih, G. Mizell et al.: Second-harmonic generation in waveguides induced by photorefractive spatial solitons, Opt. Lett. 24, 1145–1147 (1999).ADSCrossRefGoogle Scholar
  125. 125.
    C. Lou, J. Xu, H. Qiao et al. Enhanced second-harmonic generation by means of high-power confinement in a photovoltaic soliton-induced waveguide, Opt. Lett. 29, 953–955 (2004).ADSCrossRefGoogle Scholar
  126. 126.
    J.R. Salgueiro, A.H. Carlsson, E. Ostrovskaya et al.: Second-harmonic generation in vortex-induced waveguides, Opt. Lett. 29, 593–595 (2004).ADSCrossRefGoogle Scholar
  127. 127.
    E. DelRe, M. Tamburrini, A.J. Agranat: Soliton electro-optic effects in paraelectrics, Opt. Lett. 25, 963–965 (2000).ADSCrossRefGoogle Scholar
  128. 128.
    D. Kip, C. Anastassiou, E. Eugenieva et al.: Transmission of images through highly nonlinear media by gradient-index lenses formed by incoherent solitons, Opt. Lett. 26, 524–526 (2001).ADSCrossRefGoogle Scholar
  129. 129.
    A. Guo, M. Henry, G.J. Salamo et al.: Fixing multiple waveguides induced by photorefractive solitons: directional couplers and beam splitters, Opt. Lett. 26, 1274–1276 (2001).ADSCrossRefGoogle Scholar
  130. 130.
    E. DelRe, B. Crosignani, P. Di Porto et al.: Electro-optic beam manipulation through photorefractive needles, Opt. Lett. 27, 2188–2190 (2002).ADSCrossRefGoogle Scholar
  131. 131.
    S. Lan, J.A. Giordmaine, M. Segev et al.: Optical parametric oscillation in soliton-induced waveguides, Opt. Lett. 27, 737–739 (2002).ADSCrossRefGoogle Scholar
  132. 132.
    E. DelRe, E. Palange, A.J. Agranat: Fiber-launched ultratight photorefractive solitons integrating fast soliton-based beam manipulation circuitry, J. Appl. Phys. 95, 3822–3824 (2004).ADSCrossRefGoogle Scholar
  133. 133.
    A. D’Ercole, E. Palange, E. DelRe et al.: Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays, Appl. Phys. Lett. 85, 2679–2681 (2004).ADSCrossRefGoogle Scholar
  134. 134.
    M. Asaro, M. Sheldon, Z. Chen et al.: Soliton-induced waveguides in an organic photorefractive glass, Opt. Lett. 30, 519–521 (2005).ADSCrossRefGoogle Scholar
  135. 135.
    E. DelRe, A. D’Ercole, E. Palange et al.: Observation of soliton ridge states for the self-imprinting of fiber-slab couplers, Appl. Phys. Lett. 86, 191110-1–191110-3 (2005).ADSCrossRefGoogle Scholar
  136. 136.
    N.K. Efremidis, S. Sears, D.N. Christodoulides et al.: Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E 66, 046602 (2002).ADSCrossRefGoogle Scholar
  137. 137.
    J.W. Fleischer, T. Carmon, M. Segev et al.: Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90, 023902 (2003).ADSCrossRefGoogle Scholar
  138. 138.
    J.W. Fleischer, M. Segev, N.K. Efremidis et al.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422, 147–150 (2003).ADSCrossRefGoogle Scholar
  139. 139.
    J.W. Fleischer, G. Bartal, O. Cohen et al.: Observation of vortex-ring “discrete” solitons in 2D photonic lattices, Phys. Rev. Lett., 92, 123904 (2004).ADSCrossRefGoogle Scholar
  140. 140.
    D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya et al.: Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett., 92, 123903 (2004).ADSCrossRefGoogle Scholar
  141. 141.
    O. Cohen, G. Bartal, H. Buljan et al.: Observation of random-phase lattice solitons, Nature 433, 500–503 (2005).ADSCrossRefGoogle Scholar
  142. 142.
    B. Freedman, G. Bartal, M. Segev et al.: Wave and defect dynamics in nonlinear photonic quasicrystals, Nature 440, 1166–1169 (2006).ADSCrossRefGoogle Scholar
  143. 143.
    G. Bartal, O. Cohen, H. Buljan et al.: Brillouin-zone spectroscopy of nonlinear photonic lattices, Phys. Rev. Lett. 94, 163902 (2005).ADSCrossRefGoogle Scholar
  144. 144.
    H. Trompeter, W. Krolikowski, D.N. Neshev et al.: Bloch oscillations and Zener tunneling in two-dimensional photonic lattices, Phys. Rev. Lett. 96, 053903 (2006).ADSCrossRefGoogle Scholar
  145. 145.
    H. Martin, E.D. Eugenieva, Z. Chen et al.: Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices, Phys. Rev. Lett. 92, 123902 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. DelRe
    • 1
  • M. Segev
  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità dell’Aquila and INFM-CNR CRS SOFTItaly

Personalised recommendations