Self-focusing: Past and Present pp 481-506

Part of the Topics in Applied Physics book series (TAP, volume 114)

Self-focusing and Self-defocusing of Femtosecond Pulses with Cascaded Quadratic Nonlinearities

  • Frank W. Wise
  • Jeffrey Moses

Abstract

Nonlinear phase shifts, either self-focusing or self-defocusing, can be impressed on pulses that propagate in quadratic nonlinear media. The issues that arise in the extension of these phase shifts to the femtosecond regime are outlined in this chapter, and applications to femtosecond pulse generation and propagation are reviewed. Quadratic media appear to be unique in offering a means of impressing self-defocusing nonlinear phase shifts on ultrashort pulses. Ongoing work that extends the investigation of controllable nonlinear phase shifts to pulses with a duration of a few optical cycles will be introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Armstrong, N. Bloembergen, J. Ducuing et al.: Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962).CrossRefADSGoogle Scholar
  2. 2.
    J.M.R. Thomas, J.P.E. Taran: Pulse distortions in mismatched second harmonic generation, Opt. Commun. 4, 329 (1972).CrossRefADSGoogle Scholar
  3. 3.
    N.R. Belashenkov, S.V. Gagarskii, M.V. Inochkin: On the nonlinear light refraction under the 2nd-harmonic generation, Opt. Spectrosc. 66, 806 (1989).ADSGoogle Scholar
  4. 4.
    H.J. Bakker, P.C.M. Planken, L. Kuipers et al.: Phase modulation in 2nd-order nonlinear-optical processes, Phy. Rev. A 42, 4085 (1990).CrossRefADSGoogle Scholar
  5. 5.
    R. DeSalvo, D.J. Hagan, M. Shiek-Bahae et al.: Self-focusing and self-defocusing by cascaded 2nd-order effects in KTP, Opt. Lett. 17, 28 (1992).CrossRefADSGoogle Scholar
  6. 6.
    G. Stegeman, R. Schiek, L. Torner et al.: Cascading: a promising approach to nonlinear optical phenomena, Novel Optical Materials and Applications, John Wiley, New York, pp. 49–76 (1997).Google Scholar
  7. 7.
    X. Liu, L. Qian, F. W. Wise: Generation of optical spatiotemporal solitons, Phys Rev. Lett. 82, 4631 (1999).CrossRefADSGoogle Scholar
  8. 8.
    C.R. Menyuk, R. Schiek, L. Torner: Solitary waves due to \(\chi^{(2)}/\chi^{(2)}\) cascading, J. Opt. Soc. Am. B 11, 2434 (1994).CrossRefADSGoogle Scholar
  9. 9.
    E.A. Kuznetsov, A.M. Rubenchik, V.E. Zakharov: Soliton stability in plasmas and hydrodynamics, Phys. Rep. 142, 105 (1986).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J.J. Rasmussen, K. Rypdal: Blow-up in nonlinear Schroedinger equations. 1. A general review, Phys. Scr. 33, 481 (1986).MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Y. Silberberg: Collapse of optical pulses, Opt. Lett. 15, 1282 (1990).CrossRefADSGoogle Scholar
  12. 12.
    J.H. Marburger, E. Dawes: Dynamical formation of a small-scale filament, Phys. Rev. Lett. 21, 556 (1968).CrossRefADSGoogle Scholar
  13. 13.
    R.H. Enns, S.S. Rangnekar, A.E. Kaplan: Bistable-soliton pulse-propagation: stability aspects, Phys. Rev. A 35, 466 (1987).CrossRefADSGoogle Scholar
  14. 14.
    D. Edmundson, R.H. Enns: Robust bistable light bullets, Opt. Lett. 17, 586 (1992).CrossRefADSGoogle Scholar
  15. 15.
    Y.N. Karamzin, A.P. Sukhorukov: Mutual focusing of high-power light beams in media with quadratic nonlinearity, Soviet Phys. JETP 41, 414 (1975).ADSGoogle Scholar
  16. 16.
    O.E. Martinez: Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser, IEEE J. Quantum Electron. 25, 2464 (1989).CrossRefADSGoogle Scholar
  17. 17.
    X. Liu, K. Beckwitt, F.W. Wise: Two-dimensional optical spatiotemporal solitons in quadratic media, Phys. Rev. E 62, 1328 (2000).CrossRefADSGoogle Scholar
  18. 18.
    S. Carrasco, J.P. Torres, L. Torner et al.: Walk-off acceptance for quadratic soliton generation, Opt. Commun. 191, 363–370 (2001).CrossRefADSGoogle Scholar
  19. 19.
    X. Liu, K. Beckwitt, F. W. Wise: Transverse instability of optical spatiotemporal solitons in quadratic media, Phys. Rev. Lett. 85, 1871 (2000).CrossRefADSGoogle Scholar
  20. 20.
    K. Beckwitt, Y.-F. Chen, F. W. Wise et al.: Temporal solitons in quadratic nonlinear media with normal group-velocity dispersion at the second harmonic, Phys. Rev. E 68, 0575601 (2003).CrossRefGoogle Scholar
  21. 21.
    I.N. Towers, B.A. Malomed, F.W. Wise: Light bullets in quadratic media with normal dispersion at the second harmonic, Phys. Rev. Lett. 90, 123902 (2003).CrossRefADSGoogle Scholar
  22. 22.
    L.J. Qian, X. Liu, F.W. Wise: Femtosecond Kerr-lens modelocking with negative nonlinear phase shifts, Opt. Lett. 24, 166 (1999).CrossRefADSGoogle Scholar
  23. 23.
    X. Liu, L. Qian, F.W. Wise: High-energy pulse compression using negative phase shifts produced by the cascade \(\chi^{(2)}:\chi^{(2)}\) nonlinearity, Opt. Lett. 24, 1777 (1999).CrossRefADSGoogle Scholar
  24. 24.
    X. Liu, F.O. Ilday, K. Beckwitt et al.: Femtosecond nonlinear polarization evolution based on quadratic nonlinearities, Opt. Lett. 25, 1394 (2000).CrossRefADSGoogle Scholar
  25. 25.
    K. Beckwitt, F.W. Wise, L. Qian, et al.: Compensation of self-focusing by use of the cascade quadratic nonlinearity, Opt. Lett. 26, 1696 (2001).CrossRefADSGoogle Scholar
  26. 26.
    M. Nisoli, S. De Silvestri, O. Svelto: Generation of high energy 10 fs pulses by a new pulse compression technique, Appl. Phys. Lett. 68, 2793–2795 (1996).CrossRefADSGoogle Scholar
  27. 27.
    C.P. Hauri, W. Kornelis, F.W. Helbing et al.: Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673 (2004).CrossRefADSGoogle Scholar
  28. 28.
    G. Stibenz, N. Zhavoronkov, G. Steinmeyer: Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament, Opt. Lett. 31, 274 (2006).CrossRefADSGoogle Scholar
  29. 29.
    C. Rolland, P.B. Corkum: Compression of high-power optical pulses, J. Opt. Soc. Am. B 5, 641 (1988).CrossRefADSGoogle Scholar
  30. 30.
    S. Ashihara, J. Nishina, T. Shimura et al.: Soliton compression of femtosecond pulses in quadratic media, J. Opt. Soc. Am. B 19, 2505 (2002).CrossRefADSGoogle Scholar
  31. 31.
    J.P. Torres, L. Torner: Self-splitting of beams into spatial solitons in planar waveguides made of quadratic nonlinear media, Opt. Quantum Electron. 29, 757 (1997).CrossRefGoogle Scholar
  32. 32.
    F.O. Ilday, K. Beckwitt, Y.-F. Chen et al.: Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes, J. Opt. Soc. Am. B 21, 376 (2004).CrossRefADSGoogle Scholar
  33. 33.
    J. Moses, F.W. Wise: Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal, Opt. Lett., 31, 1881 (2006).CrossRefADSGoogle Scholar
  34. 34.
    K. Beckwitt, F.O. Ilday, F.W. Wise: Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials, Opt. Lett. 29, 763 (2004).CrossRefADSGoogle Scholar
  35. 35.
    K. Beckwitt, J.A. Moses, F.O. Ilday et al.: “Cascade-Raman” soliton compression with 30-fs, terawatt pulses, Nonlinear Guided Waves and Their Applications 2003, Toronto, ON (2003).Google Scholar
  36. 36.
    M. Marangoni, C. Manzoni, R. Ramponi et al.: Group-velocity control by quadratic nonlinear interactions. Opt. Lett. 31, 534 (2006).CrossRefADSGoogle Scholar
  37. 37.
    J. Moses, F.W. Wise: Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Phys. Rev. Lett. 97, 073903 (2006).CrossRefADSGoogle Scholar
  38. 38.
    T. Brabec, F. Krausz: Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282 (1997).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Frank W. Wise
    • 1
  • Jeffrey Moses
    • 1
  1. 1.Department of Applied and Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations