Oxide-Supported Metal Thin-Film Catalysts: The How and Why

  • Valentino R. Cooper
  • Alexie M. Kolpak
  • Yashar Yourdshahyan
  • Andrew M. Rappe
Part of the Nanostructure Science and Technology book series (NST)


Oxide-supported metals play an important role in a wide variety of industrial chemical processes such as the catalytic treatment of automotive exhaust. The ability to exercise greater control over the interactions of molecules on metal surfaces will create new possibilities for pollution control and the provision of novel power sources. Furthermore, a deeper understanding of molecule surface interactions will present numerous opportunities for the design of nanocatalysts.


Metal Surface High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Oxide Support Hybrid Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Mills, M. S. Gordon, and H. Metiu, The adsorption of molecular oxygen on neutral and negative Aun clusters (n=2−5), Chem. Phys. Lett. 359, 493–499 (2002).CrossRefGoogle Scholar
  2. 2.
    Z. L. Wang, T. S. Ahmad, and M. A. El-Sayed, Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes, Surf. Sci. 380, 302–310 (1997).CrossRefGoogle Scholar
  3. 3.
    J. W. Yoo, D. J. Hatcock, and M. A. El-Sayed, Propene hydrogenation over truncated octahedral Pt nanoparticles supported on alumina, J. Catal. 214, 1–7 (2003).CrossRefGoogle Scholar
  4. 4.
    B. Yoon, H. Hakkinen, and U. Landman, Interaction of O2 with gold clusters: molecular and dissociative adsorption, J. Phys. Chem. A 107, 4066–4071 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36, 153–166 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281, 1647–1650 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Hakkinen, R. N. Barnett, and U. Landman, When gold is not noble: nanoscale gold catalysts, J. Phys. Chem. A 103, 9573–9578 (1999).CrossRefGoogle Scholar
  8. 8.
    C. Bozo, N. Guilhaume, and J.-M. Herrmann, The role of the ceria-zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions, J. Catal. 393, 393–406 (2001).CrossRefGoogle Scholar
  9. 9.
    E. J. Walter, S. P. Lewis, and A. M. Rappe, First-principles study of carbon monoxide adsorption on zirconia-supported copper, Surf. Sci. 495, 44–50 (2001).CrossRefGoogle Scholar
  10. 10.
    L. M. Molina, and B. Hammer, Active role of oxide support during CO oxidation at Au/MgO, Phys. Rev. Lett. 90, 206102–206101 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Lindsay, E. Michelangeli, B. G. Daniels, M. Polick, A. Verdini, L. Floreano, A. Morgante, J. Muscat, N. M. Harrison, and G. Thornton, Surface to bulk charge transfer at an alkali metal/metal oxide interface, Surf. Sci. 547, 859 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Roberts, and R. J. Gorte, A comparison of Pt overlayers on α-Al2O3(0001), ZnO(0001)Zn, and ZnO(000¯1)O, J. Chem. Phys. 93, 5337–5344 (1990).CrossRefGoogle Scholar
  13. 13.
    W. T. Petrie, and J. M. Vohs, Interaction of platinum films with the (000¯1) and (0001) surfaces of ZnO, J. Chem. Phys. 101, 8098–8107 (1994).CrossRefGoogle Scholar
  14. 14.
    M. S. Chen, and D. W. Goodman, The structure of catalytically active gold on titania, Science 306, 252–255 (2004).CrossRefGoogle Scholar
  15. 15.
    B. Hammer, and J. K. Nørskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci. 343, 211–220 (1995).CrossRefGoogle Scholar
  16. 16.
    B. Hammer, Y. Morikawa, and J. K. Nørskov, CO chemisorption at metal surfaces and overlayers, Phys. Rev. Lett. 76, 2141–2144 (1996).CrossRefGoogle Scholar
  17. 17.
    P. J. Eng, T. P. Trainor, G. E. Brown Jr., G. A. Waychunas, M. Newville, S. R. Sutton, and M. L. Rivers, Structure of the hydrated α-Al2O3 (0001) surface, Science 288, 1029–1033 (2000).CrossRefGoogle Scholar
  18. 18.
    L. Pauling, and S. B. Hendricks, The crystal structure of hematite and corundum, J. Am. Chem. Soc. 47, 781 (1925).CrossRefGoogle Scholar
  19. 19.
    P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, 864 (1964).CrossRefGoogle Scholar
  20. 20.
    W. Kohn, and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
  21. 21.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlations, Phys. Rev. B 46, 6671–6687 (1992).CrossRefGoogle Scholar
  22. 22.
    B. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorption energetics within density-functional theory using Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 59, 7413–7421 (1999).CrossRefGoogle Scholar
  23. 23.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B Rapid Commun. 41, 7892–7895 (1990).Google Scholar
  24. 24.
    H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188–5192 (1976).CrossRefGoogle Scholar
  25. 25.
    W. E. Lee and K. P. D. Lagerlof, Structural and electron diffraction data for sapphire(α-Al2O3), J. Electron Microsc. Techn. 2, 247 (1985).CrossRefGoogle Scholar
  26. 26.
    P. J. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, The CO/Pt(111) puzzle, J. Phys. Chem. B 105, 4018–4025 (2001).CrossRefGoogle Scholar
  27. 27.
    I. Grinberg, Y. Yourdshahyan, and A. M. Rappe, CO on Pt(111) puzzle: A possible solution, J. Chem. Phys. 117, 2264–2270 (2002).CrossRefGoogle Scholar
  28. 28.
    S. E. Mason, I. Grinberg, and A. M. Rappe, First-principles extrapolation method for accurate CO adsorption energies on metal surfaces, Phys. Rev. B Rapid Commun. 69, 161401–161404 (2004).Google Scholar
  29. 29.
    Y. Yourdshahyan, V. R. Cooper, A. M. Kolpak, and A. M. Rappe, Catalytic behaviour at the nanoscale: CO adsorption on Al2O3-supported Pt cluster, in Proc. SPIE Int. Soc. Opt. Eng., edited by T. Lian and H.-L. Dai (2003), pp. 223–232.Google Scholar
  30. 30.
    V. R. Cooper, A. M. Kolpak, Y. Yourdshahyan, and A. M. Rappe, Support-mediated activation and deactivation of Pt thin-films. Phys. Rev. B. Rapid. Comm. 72, 081409(R) (1–4) (2005)Google Scholar
  31. 31.
    G. Blyholder, Molecular orbital view of chemisorbed carbon monoxide, J. Phys. Chem. 68, 2772–2778 (1964).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Valentino R. Cooper
    • 1
  • Alexie M. Kolpak
    • 1
  • Yashar Yourdshahyan
    • 1
  • Andrew M. Rappe
    • 1
  1. 1.The Makineni Theoretical Laboratories, Department of ChemistryUniversity of PennsylvaniaPhiladelphia

Personalised recommendations