Nanotechnology and Heterogeneous Catalysis

  • Harold H. Kung
  • Mayfair C. Kung
Part of the Nanostructure Science and Technology book series (NST)


Worldwide in the past decade, nanoscience and nanotechnology has become a popular field for research and development. As an example to explain its potential significance, heterogeneous catalysis was cited as a successful application that has great benefits for society. Thus, it is reasonable to expect that the explosion in new developments in nanoscience and nanotechnologywould have a significant impact on the understanding, practice, and applications of catalysis. In this paper, a brief account is presented using selected examples to illustrate ways that these recent developments have advanced heterogeneous catalysis, both in terms of better control of heterogeneous catalytic processes, and of applying catalysis to developments in nanotechnology.


Reverse Micelle Heterogeneous Catalysis Catalytic Active Site Heterogeneous Catalytic Process Aluminum Alkoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1., December 30, 2004.Google Scholar
  2. 2.
    F. Zaera, A. J. Gellman, and G. A. Somorjai, Surface science studies of catalysis: classification of reactions, Acc. Chem. Res. 19, 24 (1986).CrossRefGoogle Scholar
  3. 3.
    R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis, Acc. Chem. Res. 34, 181 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Zhao, L. Sun, and R. M. Crooks, Preparation of Cu nanoclusters within dendrimer templates, J. Am. Chem. Soc. 120, 4877 (1998).CrossRefGoogle Scholar
  5. 5.
    H. Lang, R. A. May, B. L. Iverson, and B. D. Chandler, Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts, J. Am. Chem. Soc. 125, 14832 (2003).CrossRefGoogle Scholar
  6. 6.
    A. J. Zarur, and J. Y. Ying, Nature 403, 65 (2000).CrossRefGoogle Scholar
  7. 7.
    A. I. Kozlov, M. C. Kung, W. M. Xue, and H. H. Kung, A “soft-chemical” method to synthesize Lewis acid surfaces of aluminum oxide, Angew. Chem. Int. Ed. 42, 2415 (2003).CrossRefGoogle Scholar
  8. 8.
    W. M. Xue, M. C. Kung, A. I. Kozlov, K. E. Popp, and H. H. Kung, Catalytic aminolysis of epoxide by alumina prepared from amine-protected Al precursor, Catal. Today 85(24), 219 (2003).CrossRefGoogle Scholar
  9. 9.
    M. C. Klunduk, T. Maschmeyer, J. M. Thomas, and B. F. G. Johnson, The influence of steric congestion on the catalytic performance of TiIV active centers in the epoxidation of alkenes, Chem. Eur. J. 5, 1481 (1999).CrossRefGoogle Scholar
  10. 10.
    M. D. Jones, R. Raja, J. M. Thomas, B. F. G. Johnson, D. W. Lewis, J. R. Kenneth, and D. M. Harris, Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts, Angew. Chem. Int. Ed. 42, 4326 (2003).CrossRefGoogle Scholar
  11. 11.
    J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
  12. 12.
    J. M. Thomas, R. Raja, G. Sankar, and R. G. Bell, Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen, Nature 398, 227 (1999); J. M. Thomas, Designing a molecular sieve catalyst for the aerial oxidation of n-hexane to adipic acid, Angew. Chem. Int. Ed. 39, 2313 (2000).CrossRefGoogle Scholar
  13. 13.
    W. M. Xue, M. C. Kung, and H. H. Kung, Rational synthesis of asymmetric bicyclic siloxane, Chem. Commun. 2164 (2005). ([AQ] Author: Please provide volume number in references [13], [14].)Google Scholar
  14. 14.
    Z. Chang, M. C. Kung, and H. H. Kung, Stepwise synthesis of siloxane chains, Chem. Commun. 206 (2004).Google Scholar
  15. 15.
    G. Huysmans, A. Ranquin, L. Wyns, J. Steyaert, and P. Van Gelder, Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules, J. Control. Rel. 102, 171 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Okada, S. Peng, W. Spevak, and D. Charych, Color and chromism of polydiacetylene vesicles, Acc. Chem. Res. 31, 229 (1998).CrossRefGoogle Scholar
  17. 17.
    E. T. Kisak, B. Coldren, and J. A. Zasadzinski, Nanocompartments enclosing vesicles, colloids, and macromolecules via interdigitated lipid bilayers, Langmuir 18, 284 (2002).CrossRefGoogle Scholar
  18. 18.
    F. Li, L. Zhang, and R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10, 2470 (1998).CrossRefGoogle Scholar
  19. 19.
    J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem. Mater. 15, 3507 (2003).CrossRefGoogle Scholar
  20. 20.
    M. K. Singh, E. Titus, P. K. Tyagi, U. Palnitkar, D. S. Misra, M. Roy, A. K. Dua, C. S. Cojocaru, and F. Le Normand, Ni and Ni/Pt filling inside multiwalled carbon nanotubes, J. Nanosci. Nanotechnol. 3, 165 (2003).CrossRefGoogle Scholar
  21. 21.
    B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, Aligned multiwalled carbon nanotube membranes, Science 303, 62 (2004).CrossRefGoogle Scholar
  22. 22.
    T. Shimoboji, E. Larenas, T. Fowler, A. S. Hoffman, and P. S. Stayton, Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates, Bioconjugate Chem. 14 (3), 517 (2003).CrossRefGoogle Scholar
  23. 23.
    H. Dai, Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035 (2002).CrossRefGoogle Scholar
  24. 24.
    S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, Narrow (n, m),-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc. 125, 11186 (2003).CrossRefGoogle Scholar
  25. 25.
    B. Chen, G. Parker II, J. Han, M. Meyyappan, and A. M. Cassell, Heterogeneous single-walled carbon nanotube catalyst discovery and optimization, Chem. Mater. 14, 1891 (2002).CrossRefGoogle Scholar
  26. 26.
    W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. Lammert, and V. H. Crespi, Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem. Soc. 126, 13424 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Harold H. Kung
    • 1
  • Mayfair C. Kung
    • 1
  1. 1.Department of Chemical and Biological EngineerinNorthwestern UniversityEvanston

Personalised recommendations