Injectable Synthetic Extracellular Matrices for Tissue Engineering and Repair

  • Glenn D. Prestwich
  • Xiao Zheng Shu
  • Yanchun Liu
  • Shenshen Cai
  • Jennifer F. Walsh
  • Casey W. Hughes
  • Shama Ahmad
  • Kelly R. Kirker
  • Bolan Yu
  • Richard R. Orlandi
  • Albert H. Park
  • Susan L. Thibeault
  • Suzy Duflo
  • Marshall E. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 585)

Abstract

The development of novel biointeractive hydrogels for tissue engineering1, 2, 3, tissue repair, and release of drugs4 and growth factors5 has attracted considerable attention over the past decade. Our attention has focused on hydrogels based on the extracellular matrix (ECM), a heterogeneous collection of covalent and noncovalent molecular interactions comprised primary of proteins and glycosaminoglycans (GAGs)6. In the ECM, covalent interactions connect chondroitin sulfate (CS), heparan sulfate (HS) and other sulfated GAGs to core proteins forming proteoglycans (PGs). Noncovalent interactions include binding of link modules of PGs to hyaluronan (HA), electrostatic associations with ions, hydration of the polysaccharide chains, and triple helix formation to generate collagen fibrils.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.5. References

  1. 1.
    Lee, K. & Mooney, D. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001).CrossRefGoogle Scholar
  2. 2.
    Sakiyama-Elbert, S. & Hubbell, J.A. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res. 31, 183–201 (2001).CrossRefGoogle Scholar
  3. 3.
    Anseth, K.S. et al. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control. Release 78, 199–209 (2002).CrossRefGoogle Scholar
  4. 4.
    Langer, R. Biomaterial in drug delivery and tissue engineering: one laboratory’s experience. Acc. Chem. Res. 33, 94–101 (2000).CrossRefGoogle Scholar
  5. 5.
    Lee, K.Y., Peters, M.C., Anderson, K.W. & Mooney, D.J. Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998–1000 (2000).CrossRefGoogle Scholar
  6. 6.
    Knudson, C.B. & Knudson, W. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69–78 (2001).CrossRefGoogle Scholar
  7. 7.
    Toole, B.P. Hyaluronan in morphogenesis. Semin. Cell Dev. Biol. 12, 79–87 (2001).CrossRefGoogle Scholar
  8. 8.
    Prestwich, G.D. et al. Chemically modified hyaluronan: New biomaterials and probes for cell biology. in New Frontiers in Medical Sciences: Redefining Hyaluronan (ed. Weigel, P.H.) 181–194 (Elsevier Science, Padua, Italy, 2000).Google Scholar
  9. 9.
    Vercruysse, K.P. & Prestwich, G.D. Hyaluronate derivatives in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 15, 513–555 (1998).Google Scholar
  10. 10.
    Luo, Y. & Prestwich, G.D. Novel biomaterials for drug delivery. Exp. Opin. Ther. Patents 11, 1395–1410 (2001).CrossRefGoogle Scholar
  11. 11.
    Luo, Y. & Prestwich, G.D. Cancer-targeted polymeric drugs. Curr. Cancer Drug Targ. 2, 209–226 (2002).CrossRefGoogle Scholar
  12. 12.
    Prestwich, G.D. Biomaterials from chemically-modified hyaluronan. Glycoforum http://glycoforum.gr.jp/science/hyaluronan/HA18/HA18E.html (2001).Google Scholar
  13. 13.
    Shu, X.Z. & Prestwich, G.D. Therapeutic biomaterials from chemically modified hyaluronan. in Chemistry and Biology of Hyaluronan (ed. Hales, C.A.) 475–504 (Elsevier Press, Amsterdam, 2004).Google Scholar
  14. 14.
    Shu, X.Z., Liu, Y., Palumbo, F., Luo, Y. & Prestwich, G.D. In situ crosslinkable glycosaminoglycan hydrogels for tissue engineering. Biomaterials 25, 1139–1348 (2004).Google Scholar
  15. 15.
    Kirker, K.R., Luo, Y., Nielson, J.H., Shelby, J. & Prestwich, G.D. Glycosaminoglycan hydrogel films as biointeractive dressings for wound healing. Biomaterials 23, 3661–3671 (2002).CrossRefGoogle Scholar
  16. 16.
    Kirker, K.R., Luo, Y., Morris, S.E., Shelby, J. & Prestwich, G.D. Glycosaminoglycan hydrogel films as supplemental wound dressings for donor sites. J. Burn Care Rehabil. 25, 276–286 (2004).CrossRefGoogle Scholar
  17. 17.
    Proctor, M. et al. Composition of hyaluronan affects wound healing in the rabbit maxillary sinus. Am. J. Rhinology, in press (2005).Google Scholar
  18. 18.
    Gilbert, M.E. et al. Chrondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114, 1406–1409 (2004).CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Li, H., Shu, X.Z., Gray, S.D. & Prestwich, G.D. Crosslinked hyaluronan hydrogels containing mitomycin C reduce post-operative abdominal adhesions. Fertil. & Steril. 83, 1275–1283 (2005).CrossRefGoogle Scholar
  20. 20.
    Hansen, J.K., Thibeault, S.L., Walsh, J.F., Shu, X.Z. & Prestwich, G.D. In vivo engineering of the vocal fold ECM with injectable HA hydrogels: Early effects on tissue repair and biomechanics in a rabbit model. Ann. Otol. Rhinol. Laryngol. 114, 662–670 (2005).Google Scholar
  21. 21.
    Sondrup, C., Liu, Y., Shu, X.Z., Prestwich, G.D. & Smith, M.E. Bioactive stents in the prevention of airway stenosis. Otolaryngol. Head & Neck Surg., in press (2005).Google Scholar
  22. 22.
    Pouyani, T. & Prestwich, G.D. Functionalized derivatives of hyaluronic acid oligosaccharides: Drug carriers and novel biomaterials. Bioconjugate Chem. 5, 339–347 (1994).CrossRefGoogle Scholar
  23. 23.
    Pouyani, T., Harbison, G.S. & Prestwich, G.D. Novel hydrogels of hyaluronic acid: Synthesis, surface morphology, and solid-state NMR. J. Am. Chem. Soc. 116, 7515–7522 (1994).CrossRefGoogle Scholar
  24. 24.
    Vercruysse, K.P., Marecak, D.M., Marecek, J.F. & Prestwich, G.D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 8, 686–694 (1997).CrossRefGoogle Scholar
  25. 25.
    Shu, X.Z., Liu, Y., Luo, Y., Roberts, M.C. & Prestwich, G.D. Disulfide crosslinked hyaluronan hydrogels. Biomacromolecules 3, 1304–1311 (2002).CrossRefGoogle Scholar
  26. 26.
    Liu, Y., Shu, X.Z. & Prestwich, G.D. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 26, 4737–4746 (2005).CrossRefGoogle Scholar
  27. 27.
    Ghosh, K. et al. Rheological characterization of in situ crosslinkable hyaluronan hydrogels. Biomacromolecules 6, 2857–2865 (2005).CrossRefGoogle Scholar
  28. 28.
    Shu, X.Z., Liu, Y., Palumbo, F. & Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24, 3825–3834 (2003).CrossRefGoogle Scholar
  29. 29.
    Shu, X.Z. et al. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J. Biomed. Mat. Res. 68A, 365–375 (2004).CrossRefGoogle Scholar
  30. 30.
    Ghosh, K., Ren, X.-D., Shu, X.Z., Prestwich, G.D. & Clark, R.A.F. Fibronectin functional domains coupled to hyaluronan stimulate primary human dermal fibroblast responses critical for wound healing. Tissue Eng., in press (2005).Google Scholar
  31. 31.
    Peattie, R.A. et al. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25, 2789–2798 (2004).CrossRefGoogle Scholar
  32. 32.
    Peattie, R.A. et al. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials, 27, 1868–1875 (2006).CrossRefGoogle Scholar
  33. 33.
    Cai, S., Liu, Y., Shu, X.Z. & Prestwich, G.D. Injectable glycosaminoglycan hydrogels for controlled release of basic fibroblast growth factor. Biomaterials 26, 6054–6067 (2005).CrossRefGoogle Scholar
  34. 34.
    Mironov, V. et al. Fabrication of tubular tissue construct by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan hydrogel. Biomaterials 26, 7628–7635 (2005).CrossRefGoogle Scholar
  35. 35.
    Prestwich, G.D., Liu, Y., Shu, X.Z. & Xu, Y. 3-D culture of tumors in vitro and in vivo in a synthetic extracellular matris. in American Association for Cancer Research (Anaheim, CA, 2005).Google Scholar
  36. 36.
    Li, H., Liu, Y., Shu, X.Z., Gray, S.D. & Prestwich, G.D. Synthesis and biological evaluation of a crosslinked hyaluronan-mitomycin C hydrogel. Biomacromolecules 5, 895–902 (2004).CrossRefGoogle Scholar
  37. 37.
    Duflo, S., Thibeault, S.L., Li, W., Shu, X.Z. & Prestwich, G.D. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng., in press (2005).Google Scholar
  38. 38.
    Liu, Y. et al. Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix. J. Orthoped. Res., in press (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Glenn D. Prestwich
    • 1
    • 3
    • 4
  • Xiao Zheng Shu
    • 1
    • 4
  • Yanchun Liu
    • 1
    • 4
  • Shenshen Cai
    • 1
    • 4
  • Jennifer F. Walsh
    • 2
    • 4
  • Casey W. Hughes
    • 2
    • 4
  • Shama Ahmad
    • 2
    • 4
  • Kelly R. Kirker
    • 2
  • Bolan Yu
    • 1
    • 4
  • Richard R. Orlandi
    • 3
    • 4
  • Albert H. Park
    • 3
    • 4
  • Susan L. Thibeault
    • 3
    • 4
  • Suzy Duflo
    • 3
    • 4
  • Marshall E. Smith
    • 3
    • 4
  1. 1.Department of Medicinal ChemistryThe University of UtahSalt Lake CityUSA
  2. 2.Department of BioengineeringThe University of UtahSalt Lake CityUSA
  3. 3.Department of SurgeryThe University of UtahSalt Lake CityUSA
  4. 4.Center for Therapeutic BiomaterialsThe University of UtahSalt Lake CityUSA

Personalised recommendations