Advertisement

Intrinsic Versus Extrinsic Vascularization in Tissue Engineering

  • Elias Polykandriotis
  • Raymund. E. Horch
  • Andreas Arkudas
  • Apostolos Labanaris
  • Kay Brune
  • Peter Greil
  • Alexander D. Bach
  • Jürgen Kopp
  • Andreas Hess
  • Ulrich Kneser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 585)

Abstract

In-vitro culture of tissues can be regulated by controlled medium administration whereas ex-vivo bioreactors are designed with the capability of providing tissue engineered devices with continuous nutrient support. When these materials or cellular constructs are transferred in vivo they have to rely on processes like interstitial fluid diffusion and blood perfusion. Here recites a core limitation for transfer of tissue engineering models from the in vitro to the in vivo environment. Diffusion is the initial process involved but it can only provide for cell support within a maximum range of 200 μm into the matrix.1, 2, 3, 4

Keywords

Tissue Engineering Subcutaneous Implantation Fibrovascular Tissue Isolation Chamber Calcium Phosphate Bone Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

21.7. References

  1. 1.
    Horch RE, Bannasch H, Stark GB. Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds. Transplant Proc. 33(1–2): 642–4. (2001)CrossRefGoogle Scholar
  2. 2.
    Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 22(11): 1279–88. (2001)CrossRefGoogle Scholar
  3. 3.
    Greene HSN. Heterologous transplantation of mammalian tumors. Exp. Med. 73: 461. (1961)CrossRefGoogle Scholar
  4. 4.
    Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 138(4): 745–53. (1973)CrossRefGoogle Scholar
  5. 5.
    Eiselt P, Kim BS, Chacko B, Isenberg B, Peters MC, Greene KG, Roland WD, Loebsack AB, Burg KJ, Culberson C, Halberstadt CR, Holder WD, Mooney DJ. Development of technologies aiding large-tissue engineering. Biotechnol Prog. 14(1): 134–40. (1998)CrossRefGoogle Scholar
  6. 6.
    Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 55(8): 603–10. (2002)CrossRefGoogle Scholar
  7. 7.
    Wake MC, Patrick CW, Jr., Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3(4): 339–43. (1994)Google Scholar
  8. 8.
    Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10(9–10): 1536–47. (2004)Google Scholar
  9. 9.
    Mooney DJ, Mikos AG. Growing new organs. Sci Am. 280(4): 60–5. (1999)CrossRefGoogle Scholar
  10. 10.
    Kneser U, Voogd A, Ohnolz J, Buettner O, Stangenberg L, Zhang YH, Stark GB, Schaefer DJ. Fibrin gelimmobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 179(4): 158–69. (2005)CrossRefGoogle Scholar
  11. 11.
    Beier JP, Kneser U, Stern-Strater J, Stark GB, Bach AD. Y chromosome detection of three-dimensional tissue-engineered skeletal muscle constructs in a syngeneic rat animal model. Cell Transplant. 13(1): 45–53. (2004)Google Scholar
  12. 12.
    Kneser U, Kaufmann PM, Fiegel HC, Pollok JM, Kluth D, Herbst H, Rogiers X. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res. 47(4): 494–503. (1999)CrossRefGoogle Scholar
  13. 13.
    Mimoun M, Hilligot P, Baux S. The nutrient flap: a new concept of the role of the flap and application to the salvage of arteriosclerotic lower limbs. Plast Reconstr Surg. 84(3): 458–67. (1989)Google Scholar
  14. 14.
    Bach AD, Kopp J, Stark GB, Horch RE. The versatility of the free osteocutaneous fibula flap in the reconstruction of extremities after sarcoma resection. World J Surg Oncol. 2(1): 22. (2004)CrossRefGoogle Scholar
  15. 15.
    Tamai S, Komatsu S, Sakamoto H, Sano S, Sasauchi N. Free muscle transplants in dogs, with microsurgical neurovascular anastomoses. Plast Reconstr Surg. 46(3): 219–25. (1970)CrossRefGoogle Scholar
  16. 16.
    Chuang DC. Functioning free-muscle transplantation for the upper extremity. Hand Clin. 13(2): 279–89. (1997)Google Scholar
  17. 17.
    McCraw JB. On the transfer of a free dorsalis pedis sensory flap to the hand. Plast Reconstr Surg. 59(5): 738–9. (1977)CrossRefGoogle Scholar
  18. 18.
    Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng. 43(7): 573–81. (1994)CrossRefGoogle Scholar
  19. 19.
    Erol OO, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 30: 530–1. (1979)Google Scholar
  20. 20.
    Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 354Suppl 1: SI32–4. (1999)Google Scholar
  21. 21.
    Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 6(6): 595–603. (2000)CrossRefGoogle Scholar
  22. 22.
    Tanaka Y, Tsutsumi A, Crowe DM, Tajima S, Morrison WA. Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg. 53(1): 51–7. (2000)CrossRefGoogle Scholar
  23. 23.
    Khouri RK, Upton J, Shaw WW. Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast Reconstr Surg. 87(1): 108–15. (1991)CrossRefGoogle Scholar
  24. 24.
    Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 10(5–6): 789–95. (2004)CrossRefGoogle Scholar
  25. 25.
    Lee JH, Cornelius CP, Schwenzer N. Neo-osseous flaps using demineralized allogeneic bone in a rat model. Ann Plast Surg. 44(2): 195–204. (2000)CrossRefGoogle Scholar
  26. 26.
    Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann K, Hess A, Brune K, Greil P, Stürzl M, Horch RE. Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Submitted to: Tissue Eng. (2005)Google Scholar
  27. 27.
    Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Bach A, Kopp J, Horch R. Vascularized bone replacement for the treatment of chronic bone defects-initial results of microsurgical hard tissue vascularization. Zeitschr Wundheilung. 4(3): 62–68. (2004)Google Scholar
  28. 28.
    Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts—technique and applications: updated review. Scanning Microsc. 4(4): 889–940; discussion 941. (1990)Google Scholar
  29. 29.
    Lametschwandtner A, Miodonski A, Simonsberger P. On the prevention of specimen charging in scanning electron microscopy of vascular corrosion casts by attaching conductive bridges. Mikroskopie. 36(9–10): 270–3. (1980)Google Scholar
  30. 30.
    Macleod TM, Williams G, Sanders R, Green CJ. Histological evaluation of Permacol as a subcutaneous implant over a 20-week period in the rat model. Br J Plast Surg. 58(4): 518–32. (2005)Google Scholar
  31. 31.
    Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 112(6): 1636–44. (2003)CrossRefGoogle Scholar
  32. 32.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Jr., Gimbrone MA, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 83(7): 2114–7. (1986)CrossRefGoogle Scholar
  33. 33.
    Westerband A, Crouse D, Richter LC, Aguirre ML, Wixon CC, James DC, Mills JL, Hunter GC, Heimark RL. Vein adaptation to arterialization in an experimental model. J Vasc Surg. 33(3): 561–9. (2001)CrossRefGoogle Scholar
  34. 34.
    Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation. 8(4): 229–41. (2001)CrossRefGoogle Scholar
  35. 35.
    Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech. 66(6): 275–88. (2005)CrossRefGoogle Scholar
  36. 36.
    Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res. 20(5): 848–57. (2005)CrossRefGoogle Scholar
  37. 37.
    Kirkpatrick CJ, Unger RE, Krump-Konvalinkova V, Peters K, Schmidt H, Kamp G. Experimental approaches to study vascularization in tissue engineering and biomaterial applications. J Mater Sci Mater Med. 14(8): 677–81. (2003)CrossRefGoogle Scholar
  38. 38.
    Westerband A, Gentile AT, Hunter GC, Gooden MA, Aguirre ML, Berman SS, Mills JL. Intimal growth and neovascularization in human stenotic vein grafts. J Am Coll Surg. 191(3): 264–71. (2000)CrossRefGoogle Scholar
  39. 39.
    Masuda H, Kawamura K, Nanjo H, Sho E, Komatsu M, Sugiyama T, Sugita A, Asari Y, Kobayashi M, Ebina T, Hoshi N, Singh TM, Xu C, Zarins CK. Ultrastructure of endothelial cells under flow alteration. Microsc Res Tech. 60(1): 2–12. (2003)CrossRefGoogle Scholar
  40. 40.
    Diaz-Flores L, Gutierrez R, Varela H. Angiogenesis: an update. Histol Histopathol. 9(4): 807–43. (1994)Google Scholar
  41. 41.
    Patrick CW, Jr., Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 5(2): 139–51. (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Elias Polykandriotis
    • 1
  • Raymund. E. Horch
    • 1
  • Andreas Arkudas
    • 1
  • Apostolos Labanaris
    • 1
  • Kay Brune
    • 2
  • Peter Greil
    • 3
  • Alexander D. Bach
    • 1
  • Jürgen Kopp
    • 1
  • Andreas Hess
    • 2
  • Ulrich Kneser
    • 1
  1. 1.Dept. Plastic and Hand SurgeryUniversity of ErlangenGermany
  2. 2.Institute of Pharmacology and ToxicologyUniversity of ErlangenGermany
  3. 3.Institute of Materials Sciences, Dept. Glass and CeramicsUniversity of ErlangenGermany

Personalised recommendations