Assessment of Chimerism in the Setting of Allogeneic Hematopoietic Cell Transplantation

  • Vivianna M. Van Deerlin
  • Erica Williams


Hematopoietic cell transplantation (HCT) has become a well-established treatment option for a variety of malignant and nonmalignant diseases. Molecular analysis of chimerism is used to monitor the levels of donor and recipient cells in patients after HCT. The clinical utility and interpretation of chimerism analysis depend on the type of bone marrow transplant used and the underlying disease. After transplantation, chimerism analysis is used to confirm engraftment of donor hematopoiesis and identify and quantify the percentage of recipient cells to guide patient management aimed at helping to prevent graft failure or relapse.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T. How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant. 2005;35:107–119.PubMedCrossRefGoogle Scholar
  2. 2.
    Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant. 2004;34:1–12.PubMedCrossRefGoogle Scholar
  3. 3.
    McCann SR, Crampe M, Molloy K, Lawler M. Hemopoietic chimerism following stem cell transplantation. Transfus Apher Sci. 2005;32:55–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Thiede C. Diagnostic chimerism analysis after allogeneic stem cell transplantation: new methods and markers. Am J Pharmacogenomics. 2004;4:177–187.PubMedCrossRefGoogle Scholar
  5. 5.
    Winiarski J, Mattsson J, Gustafsson A, et al. Engraftment and chimerism, particularly of T-and B-cells, in children undergoing allogeneic bone marrow transplantation. Pediatr Transplant. 1998;2:150–156.PubMedGoogle Scholar
  6. 6.
    Baron F, Storb R. Allogeneic hematopoietic cell transplantation as treatment for hematological malignancies: a review. Springer Semin Immunopathol. 2004;26:71–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Slavin S. Graft-versus-host disease, the graft-versus-leukemia effect, and mixed chimerism following nonmyeloablative stem cell transplantation. Int J Hematol. 2003;78:195–207.PubMedCrossRefGoogle Scholar
  8. 8.
    Slavin S. New strategies for bone marrow transplantation. Curr Opin Immunol. 2000;12:542–551.PubMedCrossRefGoogle Scholar
  9. 9.
    Massenkeil G, Nagy M, Lawang M, et al. Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukaemias if complete donor chimerism can be achieved. Bone Marrow Transplant. 2003;31:339–345.PubMedCrossRefGoogle Scholar
  10. 10.
    Antin JH, Childs R, Filipovich AH, et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2001;7:473–485.PubMedCrossRefGoogle Scholar
  11. 11.
    Gardiner N, Lawler M, O’Riordan JM, Duggan C, De Arce M, McCann SR. Monitoring of lineage-specific chimaerism allows early prediction of response following donor lymphocyte infusions for relapsed chronic myeloid leukaemia. Bone Marrow Transplant. 1998;21:711–719.PubMedCrossRefGoogle Scholar
  12. 12.
    Valcarcel D, Martino R, Caballero D, et al. Chimerism analysis following allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning. Bone Marrow Transplant. 2003;31:387–392.PubMedCrossRefGoogle Scholar
  13. 13.
    Baron F, Little MT, Storb R. Kinetics of engraftment following allogeneic hematopoietic cell transplantation with reduced-intensity or nonmyeloablative conditioning. Blood Rev. 2005;19:153–164.PubMedGoogle Scholar
  14. 14.
    Dewald G, Stallard R, Al Saadi A, et al. A multicenter investigation with interphase fluorescence in situ hybridization using X-and Y-chromosome probes. Am J Med Genet. 1998;76:318–326.PubMedCrossRefGoogle Scholar
  15. 15.
    Bennett P. Demystified... microsatellites. Mol Pathol. 2000;53:177–183.PubMedCrossRefGoogle Scholar
  16. 16.
    Butler JM. Forensic DNA Typing: Biology and Technology Behind STR Markers. San Diego: Academic Press; 2001.Google Scholar
  17. 17.
    Van Deerlin VM, Leonard DG. Bone marrow engraftment analysis after allogeneic bone marrow transplantation. Clin Lab Med. 2000;20:197–225.PubMedGoogle Scholar
  18. 18.
    Fehse B, Chukhlovin A, Kuhlcke K, et al. Real-time quantitative Y chromosome-specific PCR (QYCS-PCR) for monitoring hematopoietic chimerism after sex-mismatched allogeneic stem cell transplantation. J Hematother Stem Cell Res. 2001;10:419–425.PubMedCrossRefGoogle Scholar
  19. 19.
    Bader P, Beck J, Frey A, et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant. 1998;21:487–495.PubMedCrossRefGoogle Scholar
  20. 20.
    Oliver DH, Thompson RE, Griffin CA, Eshleman JR. Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn. 2000;2:202–208.PubMedGoogle Scholar
  21. 21.
    Fredriksson M, Barbany G, Liljedahl U, Hermanson M, Kataja M, Syvanen AC. Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia. 2004;18:255–266.PubMedCrossRefGoogle Scholar
  22. 22.
    Alizadeh M, Bernard M, Danic B, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood. 2002;99:4618–4625.PubMedCrossRefGoogle Scholar
  23. 23.
    Lion T. Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia. 2003;17:252–254.PubMedCrossRefGoogle Scholar
  24. 24.
    Thiede C, Bornhauser M, Ehninger G. Evaluation of STR informativity for chimerism testing—comparative analysis of 27 STR systems in 203 matched related donor recipient pairs. Leukemia. 2004;18:248–254.PubMedCrossRefGoogle Scholar
  25. 25.
    Nollet F, Billiet J, Selleslag D, Criel A. Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing. Bone Marrow Transplant. 2001;28:511–518.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou M, Sheldon S, Akel N, Killeen AA. Chromosomal aneuploidy in leukemic blast crisis: a potential source of error in interpretation of bone marrow engraftment analysis by VNTR amplification. Mol Diagn. 1999;4:153–157.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Vivianna M. Van Deerlin
    • 1
  • Erica Williams
    • 2
  1. 1.Molecular Pathology Laboratory, Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Health SystemPhiladelphiaUSA
  2. 2.Department of Legal Medicine and the Office of the Chief Medical ExaminerVirginia Commonwealth University School of MedicineRichmondUSA

Personalised recommendations