Coronavirus Immunity: From T Cells to B Cells

  • Cornelia C. Bergmann
  • S. I. Tschen
  • Chandran Ramakrishna
  • J. M. Gonzales
  • Stephan A. Stohlman
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)


Major Histocompatibility Complex Class Infectious Virus Viral Persistence Mouse Hepatitis Virus Central Nervous System Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. Fabry, C. S. Raine, and M. N. Hart, Nervous tissue as an immune compartment: the dialect of the immune response in the CNS, Immunol. Today 15, 218-224 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    W. F. Hickey, Basic principles of immunological surveillance of the normal central nervous system, Glia 36, 118-124 (2001).CrossRefPubMedGoogle Scholar
  3. 3.
    R. Dorries, The role of T-cell-mediated mechanisms in virus infections of the nervous system, Curr. Top. Microbiol. Immunol. 253, 219-245 (2001).PubMedGoogle Scholar
  4. 4.
    D. E. Griffin, Immune responses to RNA-virus infections of the CNS, Nat. Rev. Immunol. 3, 493-502 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    R. M. Ransohoff, P. Kivisakk, and G. Kidd, Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol. 3, 569-581 (2003).CrossRefPubMedGoogle Scholar
  6. 6.
    S. Stohlman, C. Bergmann, and S. Perlman, in: Persistent Viral Infection, edited by R. Ahmed and I. Chen (John Wiley, New York, 1999), pp. 537-558.Google Scholar
  7. 7.
    N. W. Marten, S. A. Stohlman, and C. C. Bergmann, MHV infection of the CNS: mechanisms of immune-mediated control, Viral Immunol. 14, 1-18 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    M. J. Buchmeier and T. E. Lane, Viral-induced neurodegenerative disease, Curr. Opin. Microbiol. 2, 398-402 (1999).CrossRefPubMedGoogle Scholar
  9. 9.
    M. T. Lin, D. R. Hinton, N. W. Marten, C. C. Bergmann, and S. A. Stohlman, Antibody prevents virus reactivation within the central nervous system, J. Immunol. 162, 7358-7368 (1999).PubMedGoogle Scholar
  10. 10.
    C. Ramakrishna, S. A. Stohlman, R. Atkinson, M. Schlomchik, and C. C. Bergmann, Mechanisms of central nervous system viral persistence: critical role of antibody and B cells, J. Immunol. 168, 1204-1211 (2002).PubMedGoogle Scholar
  11. 11.
    J. O. Fleming, M. Trousdale, F. El-Zaatari, S. A. Stohlman, and L. P. Weiner, Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies, J. Virol. 58, 869-875 (1986).PubMedGoogle Scholar
  12. 12.
    T. E. Lane, V. C. Asensio, N. Yu,. A. D., Paoletti, I. L.Campbell, and M. J. Buchmeier, Dynamic regulation of alpha- and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease, J. Immunol. 160, 970-978 (1998).PubMedGoogle Scholar
  13. 13.
    B. Parra, D. R. Hinton, M. T. Lin, D. J. Cua, and S. A. Stohlman, Kinetics of cytokine mRNA expression in the CNS following lethal and sublethal coronavirus-induced encephalomyelitis, Virology 233, 260-270 (1997).CrossRefPubMedGoogle Scholar
  14. 14.
    B. D. Pearce, M. V. Hobbs, T. S. McGraw, and M. J. Buchmeier, Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo, J. Virol. 68, 5483-5495 (1994).PubMedGoogle Scholar
  15. 15.
    J. D. Rempel, S. J. Murray, J. Meisner, and M. J. Buchmeier, Differential regulation of innate and adaptive  immune responses in viral encephalitis, Virology 318, 381-392 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    J. D. Rempel, L. A. Quina, P. K. Blakelu-Gonzales, M. J. Buchmeier, and D. L. Gruol, Viral induction of central nervous system innate immune responses, J. Virol. 79, 4369-4381 (2005).CrossRefPubMedGoogle Scholar
  17. 17.
    T. E. Lane and M. J. Buchmeier, in: Universes in Delicate Balance: Chemokines and the Nervous System, edited by R. Ransohoff, et al. (Elsevier Press, New York, 2002), pp. 191-202.CrossRefGoogle Scholar
  18. 18.
    J. Zhou, S. Stohlman, R. Atkinson, D. Hinton, and N. Marten, Matrix metalloproteinase expression correlates with virulence following neurotropic mouse hepatitis virus infection, J. Virol. 76, 7373-7384 (2002).Google Scholar
  19. 19.
    V. W. Yong, C. Power, P. Forsyth, and D. R. Edwards, Metalloproteinases in biology and pathology of the nervous system, Nature 2, 502-511 (2001).Google Scholar
  20. 20.
    J. Zhou, S. Stohlman, D. R. Hinton, and N. Marten, Neutrophils modulate inflammation during viral induced encephalitis, J. Immunol. 170, 3331-3336 (2003).PubMedGoogle Scholar
  21. 21.
    C. C. Bergmann, B. Parra, D. Hinton, C. Ramakrishna, M. Morrison, and S. A. Stohlman, Perforin mediated effector function within the CNS requires IFN-γ mediated MHC upregulation, J. Immunol. 170, 3204-3213 (2003).PubMedGoogle Scholar
  22. 22.
    J. Zhou, N. W. Marten, C. C. Bergmann, W. B. Macklin, D. R. Hinton, and S. A. Stohlman, Expression of matrix metalloproteinases and their tissue inhibitor during viral encephalitis, J. Virol. 79, 4764-4773 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    M. J. Trifilo, C. C. Bergmann, W. A. Kuziel, and T. E. Lane, CC chemokine ligand 3 (CCL3) regulates CD8+-T-cell effector function and migration following viral infection, J. Virol. 77, 4004-4014 (2003).CrossRefPubMedGoogle Scholar
  24. 24.
    M. J. Trifilo, C. Montalto-Morrison, L. N. Stiles, K. R. Hurst, J. L. Hardison, J. E. Manning, P. S. Masters, and T. E. Lane, CXC chemokine ligand 10 controls viral infection in the central nervous system: Evidence for a role in innate immune response through recruitment and activation of natural killer cells, J. Virol. 78, 585-594 (2004).CrossRefPubMedGoogle Scholar
  25. 25.
    M. J. Trifilo and T. E. Lane, The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha-dendritic cell maturation and activation following viral infection of the central nervous system: implications or a role in T cell activation, Virology 327, 8-15 (2004).CrossRefPubMedGoogle Scholar
  26. 26.
    T. E. Lane, M. T. Liu, B. P. Chen, V. C. Asensio, R. M. Samawi, A. D. Paoletti, I. L. Campbell, S. L. Kunkel, H. S. Fox, and M. J. Buchmeier, A central role for CD4(+) T cells and RANTES in virus-induced central nervous system inflammation and demyelination, J. Virol. 74, 1415-1424 (2000).CrossRefPubMedGoogle Scholar
  27. 27.
    W. G. Glass, M. J. Hickey, J. L. Hardison, M. T. Liu, J. E. Manning, and T. E. Lane. Antibody targeting of the CC chemokine ligand 5 (CCL5) results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis, J. Immunol. 172, 4018-4025 (2004).PubMedGoogle Scholar
  28. 28.
    S. A. Stohlman, D. R. Hinton, D. Cua, E. Dimacali, J. Sensintaffar, S. Tahara, F. Hofman, and Q. Yao, Tumor necrosis factor expression during mouse hepatitis virus induced demyelination, J. Virol. 69, 5898-5903 (1995).PubMedGoogle Scholar
  29. 29.
    L. Pewe and S. Perlman, Cutting edge: CD8 T cell-mediated demyelination is IFN-gamma dependent in mice infected with a neurotropic coronavirus, J. Immunol. 168, 1547-1551 (2002).PubMedGoogle Scholar
  30. 30.
    C. C. Bergmann, J. Altman, D. Hinton, and S. A. Stohlman, Inverted immunodominance and Impaired cytolytic function of CD8+ T cells during viral persistence in the CNS, J. Immunol. 163, 3379-3387 (1999).PubMedGoogle Scholar
  31. 31.
    N. Marten, S. A. Stohlman, Z. Zhou, and C. C. Bergmann, Kinetics of virus specific CD8+ T cell expansion and trafficking following central nervous system infection, J. Virol. 77, 2775-2778 (2003).CrossRefPubMedGoogle Scholar
  32. 32.
    F. I. Wang, D. R. Hinton, W. Gilmore, M. D. Trousdale, and J. O. Fleming, Sequential infection of glial cells by the murine hepatitis virus JHM strain (MHV-4) leads to a characteristic distribution of  demyelination, Lab. Invest. 66, 744-754 (1992).PubMedGoogle Scholar
  33. 33.
    M. T. Liu, B. P. Chen, P. Oertel, M. J. Buchmeier, D. Armstrong, T. A. Hamilton, and T. E. Lane, The T cell chemoattractant IFN-inducible protein 10 (IP-10) is essential in host defense against viral-induced neurologic disease, J. Immunol. 165, 2327-2330 (2000).PubMedGoogle Scholar
  34. 34.
    M. T. Liu, H. S. Keirstead, and T. E. Lane, Naturalization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis,  J. Immunol. 167, 4091-4097 (2001).PubMedGoogle Scholar
  35. 35.
    A. E. Hauser, G. F. Debes, S. Arce, G. Cassese, A. Hamann, A. Radbruch, and R. A. Manz, Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response, J. Immunol. 169, 1277-1282 (2002).PubMedGoogle Scholar
  36. 36.
    C. C. Bergmann, B. Parra, D. R. Hinton, C. Ramakrishna, K. C. Dowdell, and S. Stohlman, Perforin and interferon gamma mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells, J. Virol. 78, 1739-1750 (2004).CrossRefPubMedGoogle Scholar
  37. 37.
    S. A. Stohlman, C. C. Bergmann, M. T. Lin, D. J. Cua, and D. R. Hinton, CTL effector function within the CNS requires CD4+ T cells, J. Immunol. 160, 2896-2904 (1998).PubMedGoogle Scholar
  38. 38.
    J. Zhou, D. R. Hinton, S. A. Stohlman, and N. Marten, Maintenance of CD8+ T cells during acute viral infection of the central nervous system requires CD4+ T cells but not interleukin-2, Virol. Immunol. 18, 162-169 (2005).CrossRefGoogle Scholar
  39. 39.
    A. M. Chen, N. Khanna, S. A. Stohlman, and C. C. Bergmann, Virus-specific and bystander CD8 T cells recruited during virus-induced encephalomyelitis, J. Virol. 79, 4700-4708 (2005).CrossRefPubMedGoogle Scholar
  40. 40.
    N. Marten, S. Stohlman, and C. C. Bergmann, Role of Viral Persistence in Retaining CD8+ T cells within the central nervous system, J. Virol. 74, 7903-7910 (2000).CrossRefPubMedGoogle Scholar
  41. 41.
    N. W. Marten, S. A. Stohlman, R. Atkinson, D. A. Hinton, and C. C. Bergmann, Contributions of CD8+ T cells and viral spread to demyelinating disease, J. Immunol. 164, 4080-4088 (2000).PubMedGoogle Scholar
  42. 42.
    M. Lin, S. Stohlman, and D. Hinton, Mouse hepatitis virus is cleared from the central nervous system of mice lacking perforin-mediated cytolysis, J. Virol. 71, 383-391 (1997).PubMedGoogle Scholar
  43. 43.
    B. Parra, D. R. Hinton, N. Marten, C. C. Bergmann, M. Lin, C. Yang, and S. A. Stohlman, Gamma interferon is required for viral clearance from central nervous system oligodendroglia, J. Immunol. 162, 1641-1647 (1999).PubMedGoogle Scholar
  44. 44.
    B. Parra, M. Lin, S. Stohlman, C. Bergmann, R. Atkinson, and D. Hinton, Contributions of Fas-Fas ligand interactions to the pathogenesis of mouse hepatitis virus in the central nervous system, J. Virol. 74, 2447-2450 (2000).CrossRefPubMedGoogle Scholar
  45. 45.
    J. M. Gonzalez, C. C. Bergmann, B. Fuss, D. R. Hinton, W. B. Macklin, and S. A. Stohlman, Expression of a dominant negative IFN-γ receptor on mouse oligodendrocytes, Glia 51, 22-34 (2005).CrossRefPubMedGoogle Scholar
  46. 46.
    J. M. Redwine, M. J. Buchmeier, and C. F. Evans, In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection, Am. J. Pathol. 159, 1219-1224 (2001).PubMedGoogle Scholar
  47. 47.
    C. Ramakrishna, S. Stohlman, R. Atkinson, D. H. Hinton, and C. C. Bergmann, Differential regulation of primary and secondary CD8+ T cells in the CNS, J. Immunol. 173, 6265-6273 (2004).PubMedGoogle Scholar
  48. 48.
    S. Hawke, P. G. Stevenson, S. Freeman, and C. R. M. Bangham, Long term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system, J. Exp. Med. 187, 1575-1582 (1998).CrossRefPubMedGoogle Scholar
  49. 49.
    N. Marten, S. Stohlman, W. Smith-Begolka, S. Miller, M. Dimicali, Q. Yao, S. Stohl, J. Goverman, and C. Bergmann, Selection of CD8+ T cells with highly focused specificity during viral persistence in the central nervous system, J. Immunol. 162, 3905-3914 (1999).PubMedGoogle Scholar
  50. 50.
    D. Masopust and R. Ahmed, Reflections on CD8 T-cell activation and memory, Immunol. Res. 29, 151-160 (2004).CrossRefPubMedGoogle Scholar
  51. 51.
    L. Lefrancois and D. Masopust, T cell immunity in lymphoid and non-lymphoid tissues, Curr. Opin. Immunol. 14, 503-508 (2002).CrossRefPubMedGoogle Scholar
  52. 52.
    A. E. Matthews, S. R. Weiss, M. J. Shlomchik, L. G. Hannum, J. L. Gombold, and J. Y. Paterson, Antibody is required for clearance of infectious murine hepatitis virus A59 from the central nervous system, but not the liver, J. Immunol. 167, 5254-5263 (2001).PubMedGoogle Scholar
  53. 53.
    C. Ramakrishna, C. Bergmann, R. Atkinson, and S. Stohlman, Control of central nervous system viral persistence by neutralizing antibody, J. Virol. 77, 4670-4678 (2003).CrossRefPubMedGoogle Scholar
  54. 54.
    S. I. Tschen, C. Bergmann, C. Ramakrishna, R. Atkinson, and S. Stohlman, Recruitment kinetics of antibody secreting cells within the CNS following viral encephalomyelitis, J. Immunol. 168, 2922-2929 (2002).PubMedGoogle Scholar
  55. 55.
    G. F. Wu, A. A. Dandekar, L. Pewe, and S. Perlman, CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination, J. Immunol. 165, 2278-2286 (2000).PubMedGoogle Scholar
  56. 56.
    G. F. Wu, L. Pewe, and S. Perlman, Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase, J. Virol. 74, 7683-7686 (2000).CrossRefPubMedGoogle Scholar
  57. 57.
    L. Pewe, J. Haring, and S. Perlman, CD4 T-cell-mediated demyelination is increased in the absence of gamma interferon in mice infected with mouse hepatitis virus, J. Virol. 76, 7329-7333 (2002).CrossRefPubMedGoogle Scholar
  58. 58.
    A. A. Dandekar, K. O'Malley, and S. Perlman, Important roles for gamma interferon and NKG2D in gammadelta T-cell-induced demyelination in T-cell receptor beta-deficient mice infected with a coronavirus, J. Virol. 79, 9388-9396 (2005).CrossRefPubMedGoogle Scholar
  59. 59.
    T. S. Kim and S. Perlman, Viral expression of CCL2 is sufficient to induce demyelination in RAG1-/- mice infected with a neurotropic coronavirus, J. Virol. 79, 7113-7120 (2005).CrossRefPubMedGoogle Scholar
  60. 60.
    J. S. Haring, L. L. Pewe, and S. Perlman, Bystander CD8+ T cell-mediated demyelination after viral infection of the central nervous system, J. Immunol. 169, 1550-1555 (2002).PubMedGoogle Scholar
  61. 61.
    J. Cabarrocas, J. Bauer, E. Piaggio, R. Liblau, and H. Lassman, Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes, Eur. J. Immunol. 33, 1174-1182 (2003).CrossRefPubMedGoogle Scholar
  62. 62.
    D. B. McGavern and P. Truong, Rebuilding an immune-mediated central nervous system disease: weighing the pathogenicity of antigen-specific versus bystander T cells, J. Immunol. 173, 4779-4790 (2004).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Cornelia C. Bergmann
    • 1
  • S. I. Tschen
    • 2
  • Chandran Ramakrishna
    • 3
  • J. M. Gonzales
    • 4
  • Stephan A. Stohlman
    • 5
  1. 1.Lerner Research InstituteCleveland Clinic FoundationClevelandUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.University of Southern CaliforniaLos AngelesUSA
  4. 4.Cleveland Clinic FoundationClevelandUSA
  5. 5.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations