Carbon Nanotubes as Electrical Interfaces to Neurons

  • Michele Giugliano
  • Luca Gambazzi
  • Laura BalleriniEmail author
  • Maurizio Prato
  • Stephane Campidelli
Part of the Fundamental Biomedical Technologies book series (FBMT)


Translating basic neuroscience research into experimental neurology applications often requires functional interfacing of the central nervous system (CNS) with artificial devices designed to monitor and/or stimulate brain electrical activity. Ideally, such interfaces should provide a high temporal and spatial resolution over a large area of tissue during stimulation and/or recording of neuronal activity, with the ultimate goal to elicit/detect the electrical excitation at the single-cell level and to observe the emerging spatiotemporal correlations within a given functional area. Activity patterns generated by CNS neurons have been typically correlated with a sensory stimulus, a motor response, or a potentially cognitive process.


Gate Voltage Neuronal Membrane Central Nervous System Neuron Intracellular Action Potential Electrical Circuit Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Central nervous system


Membrane capacitance


CNT equivalent capacitance


Carbon nanotube


Amplifier shunt capacitance


K+ Nerst equilibrium potential


Nerst equilibrium potential of leak membrane currents


Na+ Nerst equilibrium potential


Field-effect transistor


K+ conductance


Leak conductance


Na+ conductance


Multi-walled carbon nanotube


Axial cytoplasmic resistance


CNT equivalent resistance


Amplifier input resistance


Seal resistance


Spread resistance


Single-walled carbon nanotube


CNT potential


Membrane potential



Authors acknowledge financial support from the Italian Ministry of University and Research (Cofin and FIRB), from the École Polytechnique Fédérale de Lausanne EPFL, from the European Commission (NEURONANO-NMP4-CT-2006-031847), and from the “Stoicescu” grant. M.G. and L.G. are grateful to Prof. H. Markram, C. Petersen, and S. Martinoia for helpful discussions and to S. Garcia and K. Antoniello for assistance.


  1. Avouris P, Radosavljevic M, Wind SJ (2005) Carbon Nanotube Electronics and Optoelectronics, in “Applied Physics of Carbon Nanotubes, Fundamentals of Theory, Optics and Transport Devices”, (Rotkin SV, Subramoney S, eds.), Springer Berlin, 227–49.Google Scholar
  2. Avouris P, Chen J (2006) Nanotube electronics and optoelectronics. Materials Today 9, 46–54.CrossRefGoogle Scholar
  3. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2, 605–615.CrossRefGoogle Scholar
  4. Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL. (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett. 84(26 Pt 1):6082–5.PubMedCrossRefGoogle Scholar
  5. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C (1999) Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. Angew. Chem. Int. Ed. 38:1912–1915.CrossRefGoogle Scholar
  6. Bollobás B (2001) Random graphs (2nd ed.), Cambridge University Press.Google Scholar
  7. Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, Berger, F (2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328(2):177–86.PubMedCrossRefGoogle Scholar
  8. Bethune DS, Kiang CHM, de Vries S, Gorman G, Savoy R, Vazquez, J, Beyers R (1993) Cobalt-catalyzed Growth of Carbon Nanotubes with Single-atomic-layer Walls. Nature 363:605–7.CrossRefGoogle Scholar
  9. Bockris J, Reddy AKN, Gamoa-Aldeco M (2000) Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed., Kluwer Academic, New York (USA).Google Scholar
  10. Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  11. Chen RJ, Bangsaruntip S, Drouvalakisdagger KA, Wong Shi Kam N, Shim M, Li Y, Kim W, Utzdagger PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U S A 100(9):4984–9.PubMedCrossRefGoogle Scholar
  12. Chua LO (1980) Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. 27:1014–44.CrossRefGoogle Scholar
  13. Chen, RJ, Zhang, Y, Wang, D, Dai, HJ. (2001) Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Am. Chem. Soc. 123:3838–9.CrossRefGoogle Scholar
  14. Cellot, G, Cilia, E, Cipollone, S, Rancic, V, Sucapane, A, Giordani, S, Gambazzi, L, Markram, H, Grandolfo, M, Scaini, D, Gelain, F, Casalis, L, Prato, M, Giugliano, M and Ballerini, L. (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4:126–133.CrossRefGoogle Scholar
  15. Correa-Duarte M, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth. Nano Letters 4 (11):2233–6.CrossRefGoogle Scholar
  16. Crespo GA, Macho S, Rius FX (2008) Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Analytical Chem. 80(4):1316–22.CrossRefGoogle Scholar
  17. Czerw R, Edell D, Farrell B, Fooksa R, Phely-Bobin T, Robblee L, Tiano T (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications. Material Res. Soc. Symposium Proc. 926:19–24, Warrendale, Pa. USA.Google Scholar
  18. Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge.Google Scholar
  19. Dieckmann, GR, Dalton, AB, Johnson, PA, Razal, J, Chen, J, Giordano, GM, Munoz, E, Musselman, I H, Baughman, RH, Draper, RK. (2003) Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. J. Am. Chem. Soc. 125:1770.PubMedCrossRefGoogle Scholar
  20. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Lett. 6:152–8.Google Scholar
  21. Freitag M (2006) Carbon nanotube electronics and devices. In “Carbon Nanotubes: Properties and Applicatons”, O’Connell MJ ed., CRC Press, pp. 83–117.Google Scholar
  22. Fromherz P (2002) Electrical Interfacing of Nerve Cells and Semiconductor Chips. Chem. Phys. Chem. 3(3):276–84.PubMedCrossRefGoogle Scholar
  23. Fuhrer MS, Forero M, Zettl A, McEuen PL (2001) Ballistic transport in semiconducting carbon nanotubes. AIP Conf. Proc. 591:401–404.CrossRefGoogle Scholar
  24. Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams ZR, Ben-Jacob E, Hanein Y (2007) Electro-chemical biological properties of carbon nanotube based multi-electrode arrays. Nanotech 1:035201, doi:101088/0957-4484/18/3/035201.CrossRefGoogle Scholar
  25. Geddes LA (1972) Electrodes the Measurement of Bioelectric Events. New York: Wiley-Interscience.Google Scholar
  26. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic Functionalization of Carbon Nanotubes, J. Am. Chem. Soc. 124(5): 760–1.PubMedCrossRefGoogle Scholar
  27. Gheith MK, Pappas TC, Liopo AV, Sinani V, Shim BS, Motamedi M, Wicksted JP, Kotov NA (2006) Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv Mater 18:2975–9.CrossRefGoogle Scholar
  28. Girault HH (2004) Analytical and Chemical Electrochemistry. Marcel Dekker, Inc., New York, 2004.CrossRefGoogle Scholar
  29. Giugliano M, Prato M, Ballerini L (2008) Nanomaterial/neuronal hybrid system for functional recovery of the CNS. Drug Discov. Today: Disease Model, doi: 10.1016/j.ddmod.2008.07.004.
  30. Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential waveform: A modeling study. J Neurophysiol 95:3113–28.PubMedCrossRefGoogle Scholar
  31. Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W, Kreupl F, Hoenlein W. (2005) Carbon nanotubes for microelectronics? Small 1(4):382–90.PubMedCrossRefGoogle Scholar
  32. Grattarola M, Martinoia S (1993) Modeling the neuron-microtransducer junction: from extracellular to patch recording. IEEE Trans Biomed Eng 40(1):35–41.PubMedCrossRefGoogle Scholar
  33. Gruner G. (2006) Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem. 2006 Jan;384(2):322–35.PubMedCrossRefGoogle Scholar
  34. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J. Comput. Neurosci. 17(1):7–11.PubMedCrossRefGoogle Scholar
  35. Hodgkin AL, Huxley, AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117(4):500–44.PubMedGoogle Scholar
  36. Hu, H, Ni, Y, Montana, V, Haddon, RC, Parpura, V. (2004) Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett. 4:507–11.PubMedCrossRefGoogle Scholar
  37. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109:4285–9.PubMedCrossRefGoogle Scholar
  38. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.CrossRefGoogle Scholar
  39. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–5.CrossRefGoogle Scholar
  40. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, A.A. Shvedova (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165:88–100.PubMedCrossRefGoogle Scholar
  41. Katz E, Willner I (2004) Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics Chem. Phys. Chem. 5:1084.CrossRefGoogle Scholar
  42. Keefer KW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nature Nanotech. 3:434–9.CrossRefGoogle Scholar
  43. Kim WY, Kim KW (2007) Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green’s function method at the level of first principles theory. J. Comp. Chem.  10.1002/jcc.20865.
  44. Kirckpatrick S (1972) Percolation and Conduction. Rev. Mod. Phys. 45(4):574–88.CrossRefGoogle Scholar
  45. Lam, CW, James, JT, McCluskey, R, Hunter, RL. (2004) Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. Toxicol. Sci., 77, 126.PubMedCrossRefGoogle Scholar
  46. Léonard F, Talin AA. (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett. 97(2):026804.PubMedCrossRefGoogle Scholar
  47. Li J, Andrews RJ (2007) Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays. Acta Neurochir. Suppl. 97(Pt 2):537–45.PubMedCrossRefGoogle Scholar
  48. Llinás RR, Walton KD, Nakao M, Hunter I, Anquetil PA (2005) Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. J. Nanoparticle Res. 7:111–27.CrossRefGoogle Scholar
  49. Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC (2006) Biocompatibility of native functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosci. Nanotechnol. 6:1365–74.PubMedCrossRefGoogle Scholar
  50. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 105:1410–1415.PubMedCrossRefGoogle Scholar
  51. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5:1107–10.PubMedCrossRefGoogle Scholar
  52. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55.PubMedCrossRefGoogle Scholar
  53. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L. (2006) Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett. 6:1121–1125.PubMedCrossRefGoogle Scholar
  54. Male KB, Hrapovic S, Luong JH (2007) Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 132(12):1254–61.PubMedCrossRefGoogle Scholar
  55. Markram H (2006) The blue brain project. Nature Rev. Neurosci. 7(2):153–60.CrossRefGoogle Scholar
  56. Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q. Rev. Biophys. 35(1):63–87.PubMedCrossRefGoogle Scholar
  57. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P. (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87(25):256805.PubMedCrossRefGoogle Scholar
  58. Martinoia S, Massobrio P, Bove M, Massobrio G (2004) Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data. IEEE Trans. Biomed. Eng. 51(5):859–64.PubMedCrossRefGoogle Scholar
  59. Matsumoto, K, Sato, C, Naka, Y, Kitazawa, A, Whitby, RLD, Shimizu, NJ. (2007) Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes Biosci. Bioeng. 103, 216–220.Google Scholar
  60. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes use as substrates for neuronal growth. J. Mol. Neurosci. 14:175–82.PubMedCrossRefGoogle Scholar
  61. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits, J. Neurosci. 27(26):6931–6.CrossRefGoogle Scholar
  62. Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel network simulations with NEURON. J. Comput. Neurosci. 21(2):119–29.PubMedCrossRefGoogle Scholar
  63. Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9):1621–3.CrossRefGoogle Scholar
  64. Muguruma H, Shibayama Y, Matsui Y (2008) An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme. Biosens. Bioelectron. 23(6):827–32.PubMedCrossRefGoogle Scholar
  65. Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT (2004) Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans. Biomed. Eng. 51(6):881–9.PubMedCrossRefGoogle Scholar
  66. Pappas TC, Wickramanyake WMS, Jan E, Motamedi M, Brodwick M, Kotov NA. (2007) Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett. 7:513–9.PubMedCrossRefGoogle Scholar
  67. Patolsky F, Weizmann Y, Willner I (2004) Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chem. Int. Ed. 43:2113–7.CrossRefGoogle Scholar
  68. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–4.PubMedCrossRefGoogle Scholar
  69. Phely-Bobin TS, Tiano T, Farrell B, Fooksa R, Robblee L, Edell DJ, Czerw R (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications. Mat. Res. Soc. Proc., San Francisco Spring Meeting.Google Scholar
  70. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3:423–8.CrossRefGoogle Scholar
  71. Radosavljevic M, Appenzeller, J, Avouris P (2001) Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science 292:706.CrossRefGoogle Scholar
  72. Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys. J. 2:145–67.PubMedCrossRefGoogle Scholar
  73. Razal JM, Gilmore KJ, Wallace GG (2008) Carbon Nanotube Biofiber Formation in a Polymer-Free Coagulation Bath. Adv. Funct. Mater 18:61–6.CrossRefGoogle Scholar
  74. Robinson DA (1968) The Electrical Properties of Metal Microelectrodes, Proc. IEEE 56(6):1065–71.CrossRefGoogle Scholar
  75. Roy S, Vedala H, Roy AD, Kim DH, Doud M, Mathee K, Shin HK, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett. 8(1):26–30.PubMedCrossRefGoogle Scholar
  76. Rutten WL (2002) Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 4:407–52.PubMedCrossRefGoogle Scholar
  77. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. (1992) Electronic structure of graphene tubules based on C60. Phys. Rev. B Condens. Matter 46(3):1804–11.PubMedCrossRefGoogle Scholar
  78. Sato Y, Shibata KI, Kataoka H, Ogino SI, Bunshi F, Yokoyama A, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Hatakeyama R, Watari F, Tohji K (2005) Strict preparation and evaluation of water-soluble hat-stacked carbon nanofibers for biomedical application and their high biocompatibility: influence of nanofiber-surface functional groups on cytotoxicity. Mol. BioSyst. 1:142–8.PubMedCrossRefGoogle Scholar
  79. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Vicki L. Colvin (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161:135–42.PubMedCrossRefGoogle Scholar
  80. Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol. 89(6):3143–54.PubMedCrossRefGoogle Scholar
  81. Schoen I, Fromherz P (2007) The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys J. 92(3):1096–111.PubMedCrossRefGoogle Scholar
  82. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–20.PubMedCrossRefGoogle Scholar
  83. Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nature Rev. Neurosci. 7:65–74.CrossRefGoogle Scholar
  84. Sinha N, Ma J, Yeow JT (2006) Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6(3):573–90.PubMedCrossRefGoogle Scholar
  85. Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ (2007) Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titaniu for orthopedic applications. Nanotechnology 18:365102.CrossRefGoogle Scholar
  86. Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett. 82:2145.CrossRefGoogle Scholar
  87. Storace M, Bove M, Grattarola M, Parodi M (1997) Simulations of the behavior of synaptically driven neurons via time-invariant circuit models, IEEE Trans. Biomed. Eng. 44(12):1282–7.PubMedCrossRefGoogle Scholar
  88. Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L (2008) Interactions between cultured neurons and carbon nanotubes: A nanoneuroscience vignette. J. Nanoneurosci. 1:1–7.Google Scholar
  89. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single ­carbon nanotube Nature 393:49–52.Google Scholar
  90. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev. 106:1105–36.PubMedCrossRefGoogle Scholar
  91. Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus, Cambridge, UK: Cambridge University Press.Google Scholar
  92. Tsang SC, Guo Z, Chen YK, Green MLH, Hill HAO, Hambley TW, Sadler PJ (1997) Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes. Angew Chem. Int. Ed. 36:2198–2200.CrossRefGoogle Scholar
  93. Yao Z, Kane CL, Dekker C. (2000) High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13):2941–4.PubMedCrossRefGoogle Scholar
  94. Wang K, Fishman HA, Dai H, Harris JS (2006) Neural Stimulation with a Carbon Nanotube Microelectrode Array, Nano Lett. 6:2043–8.PubMedCrossRefGoogle Scholar
  95. Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays, Nano Lett. 6(6):1261–8.PubMedCrossRefGoogle Scholar
  96. Zhang M, Liu K, Xiang L, Lin Y, Su L, Mao L (2007) Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Anal. Chem. 79(17):6559–65.PubMedCrossRefGoogle Scholar
  97. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone Cell Proliferation on Carbon Nanotubes, Nano Lett. 6(3):562–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michele Giugliano
    • 1
    • 2
  • Luca Gambazzi
    • 1
  • Laura Ballerini
    • 3
    Email author
  • Maurizio Prato
    • 4
  • Stephane Campidelli
    • 5
  1. 1.Laboratory of Neural Microcircuitry, Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
  3. 3.Life Science DepartmentB.R.A.I.N., University of TriesteTriesteItaly
  4. 4.Department of Pharmaceutical SciencesUniversity of TriesteTriesteItaly
  5. 5.Laboratoire d’Electronique MoléculaireCEA SaclayGif-sur-YvetteFrance

Personalised recommendations