Cetacean Bioacoustics with Emphasis on Recording and Monitoring

  • Tomonari Akamatsu

More than 80 cetacean species live in oceans, lakes, and rivers. For underwater navigation and recognition, whales and dolphins have developed unique sensory systems using acoustic signals. Toothed whales, such as dolphins and porpoises, have sonar using ultrasonic pulse trains called echolocations (Au, 1993). As top predators in the water, dolphins and porpoises rely on accurate and long-range sensory systems for catching prey. Dolphins have another type of vocalization called a whistle that is narrowband with a long duration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, T., Wang, D., Wang, K., and Naito, Y. (2005), Biosonar behaviour of free-ranging porpoises, Proceedings of the Royal Society of London Series B, 272, 797–801.CrossRefGoogle Scholar
  2. Aroyan, J.L., McDonald, M.A., Webb, S.C., Hildebrand, J.A., Clark, D., Laitman, J.T., and Reidenberg J.S. (2000), Acoustic Models of Sound Production and Propagation. In: Hearing by Whales and Dolphins. Au W.W.L., Popper A.N., Fay R.R. (eds.), New York: Springer-Verlag, pp. 409–469.Google Scholar
  3. Au, W.W.L. (1993), The sonar of dolphins. Springer-Verlag, New York, Berlin, London, Tokyo, pp. 277.Google Scholar
  4. Au, W.W.L., Popper, A.N., and Fay, R.R. (eds.) (2000), Hearing by Whales and Dolphins. Springer Handbook of Auditory Research, Springer-Verlang, New York, pp. 485.Google Scholar
  5. Au, W.W.L. and Benoit-Bird, K.J. (2003) Automatic gain control in the echolocation system of dolphins, Nature, 423, 861–863.CrossRefADSGoogle Scholar
  6. Buckland, S.T., Anderson, D.R., Burnham, K.P., and Laake, J.L. (1993), Distance Sampling Estimating Abundance of Biological Populations. Chapman & Hall, London, pp. 446.Google Scholar
  7. Bullock, T.H., Grinnel, A.D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanagisawa, K. (1968), Electrophysiological studies of central auditory mechanisms in cetaceans, Zeitschrift Fur Vergleichende Physiologie, 59, 117–156.Google Scholar
  8. Busnel, R.-G and Fish, J.R. (eds.) (1980), Animal Sonar systems. New York, Plenum Press, pp. 449–467.Google Scholar
  9. Charif, R.A., Clapham, P.J., and Clark, C.W. (2001), Acoustic detections of singing humpback whales in deep waters off the British Isles, Marine Mammal Science 17, 751–768.CrossRefGoogle Scholar
  10. Cranford, T.W., Amundin, M., and Norris, K.S. (1996), Functional morphology and homology in the odontocete nasal complex: implications for sound generation, Journal of Morphology, 228, 223–285.CrossRefGoogle Scholar
  11. Harley, H.E., Putman, E.A., and Roitblat, H.L. (2003), Bottlenose dolphins perceive object features through echolocation, Nature, 424, 667–669.CrossRefADSGoogle Scholar
  12. Janik, V.M., van Parijs, S.M., and Thompson, P.M. (2000), A two-dimensional acoustic localization system for marine mammals, Marine Mammal Science 16(2), 437–447.CrossRefGoogle Scholar
  13. Kastelein, R.A., Thomas, J.A., and Nachtigall, P.E. (eds.) (1994)., Sensory systems of aquatic mammals. De Spil Publishers, Woerden, The Netherlands, pp. 588.Google Scholar
  14. MacLennan, D.N. and Simmonds, E.J. (1992), Fisheries acoustics, Chapman & Hall, London, pp. 325.Google Scholar
  15. Mellinger, D.K. and Clark, C.W. (2003), Blue whale (Balaenoptera musculus) sounds from the North Atlantic, Journal of the Acoustical Society of America, 114, 1108–11119.CrossRefADSGoogle Scholar
  16. Nachtigall, P.E. and Moore, P.W.B. (eds.) (1988), Animal sonar: processes and performance. Plenum Press, New York, pp. 862.Google Scholar
  17. Nishimura, C.E. and Conlon, D.M. (1994), IUSS dual use: monitoring whales and earthquakes using SOSUS, Marine Technology Society Journal, 27(4), 13–21.Google Scholar
  18. Payne, R.S. and McVay, S. (1971), Songs of humpback whales, Science, 173, 585–597.CrossRefADSGoogle Scholar
  19. Richardson, W.J., Greene, Jr. C.R., Malme, C.I., and Thomson, D.H. (1995), Marine mammals and noise, Academic Press, San Diego, New York, Boston, pp. 576.Google Scholar
  20. Supin, A.Y., Popov, V.V., and Mass, A.M. (2001), The sensory physiology of aquatic mammals, Kluwer Academic Publishers, Boston, pp. 332.Google Scholar
  21. Thomas, J.A., Cynthia, F.M., and Marianne V. (eds.) (2003), Echolocation in Bats and Dolphins, The University of Chicago Press, Chicago, p. 631.Google Scholar
  22. Thomas, J.A., Kastelein, R.A., and Supin, A.Y. (eds.), (1992) Marine mammal sensory systems. Plenum Press, New York, pp. 773.Google Scholar
  23. Thomas, J.A. and Kastelein, R.A. (eds.) (1990), Sensory abilities of cetaceans: laboratory and field evidence, Plenum Press, New York, pp. 710.Google Scholar
  24. Urick, R.J. (1983), Principles of underwater sound / 3rd edition, McGraw-Hill, New York, pp. 423.Google Scholar
  25. Wartzok, D. and Ketten D. (1999), Marine Mammal Sensory Systems, In: Biology of Marine Mammals. Reynolds III J.E., Rommel S.A. (eds.), Smithonian Institution Press, Washington and London, pp. 117–175.Google Scholar
  26. Watkins, W.A. (1967), The harmonic interval: fact or artifact in spectral analysis of pulse trains, In: Marine bio-acoustics, Vol. 2. Tavolga W.N. (ed.), Pergamon Press, New York, pp. 15–43.Google Scholar
  27. Wang, K., Wang, D., Akamatsu, T., Li, S., and Xiao, J. (2005), A passive acoustical monitoring method applied to observation and abundance estimation of finless porpoises, Journal of the Acoustical Society of America, 118, 1180–1185.CrossRefADSGoogle Scholar
  28. Wenz, G.M. (1962) Acoustic ambient noise in the ocean: Spectra and sources. Journal of the Acoustical Society of America, 34,1936–1956.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tomonari Akamatsu
    • 1
  1. 1.National Research Institute of Fisheries Engineering Fisheries Research Agency of JapanKamisuIbaraki

Personalised recommendations