Organic–Inorganic Hybrids for Light-Emitting Devices and Integrated Optics

  • L.D. Carlos
  • R.A. Sá Ferreira


This work provides an overview of the latest advances in organic–inorganic hybrid materials with applications in light-emitting devices and integrated optics. The organization of the chapter intends to help the reader to gain a clear insight into the topic, from the description of the material’s synthesis to the photoluminescence results that emphasize the potential technological applications of these photonic materials for light-emitting purposes, integrated optics and non-linear optical effects.

In Sect. 12.2 conventional synthetic procedures that have been extensively used during the last decades to generate photoluminescent stable and efficient siloxane-based class I and class II disordered hybrids are described. The relevance of the sol–gel method in this context is highlighted. This section also covers recent and exciting progress in the emerging domain of hierarchically structured photonic hybrid materials prepared through the combination of sol–gel and self-assembly strategies. Reference is made to the assembly of nanobuilding blocks (NBBs) and to the few ordered materials that have been produced on the basis of the ordered hybrid approach.

In Sect. 12.3 several amorphous and highly-organized hybrid structures, lacking metal activator centres (Sect. 12.3.1) and incorporating optically-active centres (Sect. 12.3.2), are discussed. Emphasis is laid on their absorption and photoluminescent features and on the quantification of the colour emission and absolute external quantum yield. Due to their relevance to optical applications, particular attention is given to amine-functionalized cross-linked sol–gel derived hybrids in the non-doped and doped states which exhibit external photoluminescence quantum yields as high as 35 and 50%, respectively.

This review ends with Sect. 12.4 in which the requirements for developing integrated and non-linear optical devices based on hybrid materials are addressed.


Hybrid Material Inorganic Hybrid Stark Component Emission Quantum Yield Organic Chromophore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support of the Network of Excellence FAME and of Fundação para a Ciência e Tecnologia, FCT (POCTI/P/CTM/46780/02; POCI/CTM/59075/04) is gratefully acknowledged. The authors thank the collaboration of L.S. Fu, N. J. O. Silva and S. S. Nobre (University of Aveiro) and S. C. Nunes (UTAD).


  1. 1.
    1 Avnir D (1995) Organic-chemistry within ceramic matrices – doped sol–gel materials. Acc Chem Res 28: 328–334Google Scholar
  2. 2.
    2 Brinker CJ, Scherer GW (1990) Sol–gel Science, The Physics and Chemistry of Sol–Gel Processing. Academic Press, San Diego.Google Scholar
  3. 3.
    3 Corriu RJP, Leclercq D (1996) Recent developments of molecular chemistry for sol–gel processes. Angew Chem Int Ed Engl 35: 1420–1436Google Scholar
  4. 4.
    4 Judeinstein P, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6: 511–525Google Scholar
  5. 5.
    5 Sanchez C, Ribot F (1994) Design of hybrid organic–inorganic materials synthesized via sol–gel chemistry. New J Chem 18: 1007–1047Google Scholar
  6. 6.
    6 Sanchez C, Soler-Illia GJ de AA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13:3061–3083Google Scholar
  7. 7.
    7 Sanchez C, Soler-Illia GJ de AA, Ribot F, Grosso D (2003) Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. C. R. Chimie 6: 1131–1151Google Scholar
  8. 8.
    8 Schmidt H, Jonschker G, Goedicke S, Mennig M (2000) The sol–gel process as a basic technology for nanoparticle-dispersed inorganic–organic composites. J Sol–Gel Sci Technol 19: 39–51.Google Scholar
  9. 9.
    9 Schubert U, Hüsing N, Lorenz A (1995) Hybrid inorganic–organic materials by sol–gel processing of organofunctional metal alkoxides. Chem Mater 7: 2010–2027Google Scholar
  10. 10.
    10 Lebeau B, Brasselet S, Zyss J, Sanchez C (1997) Design, characterization, and processing of hybrid organic–inorganic coatings with very high second-order optical nonlinearities. Chem Mater 9: 1012–1020Google Scholar
  11. 11.
    11 Lebeau B, Sanchez C (1999) Sol–gel derived hybrid inorganic–organic nanocomposites for optics. Curr Opin Solid State Mater Sci 4: 11–23Google Scholar
  12. 12.
    12 Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18: 259–341Google Scholar
  13. 13.
    13 Loy DA, Shea KJ (1995) Bridged polysilsesquioxanes – highly porous hybrid organic–inorganic materials. Chem Rev 95: 1431–1442 Google Scholar
  14. 14.
    14 Novak BM (1993) Hybrid nanocomposite materials – between inorganic glasses and organic polymers. Adv Mater 5: 422–433Google Scholar
  15. 15.
    15 Schmidt H (1995) New type of non-crystalline solids between inorganic and organic materials. J Non Cryst Solids 73: 681–691Google Scholar
  16. 16.
    16 Schottner G (2001) Hybrid sol–gel-derived polymers: applications of multifunctional materials. Chem Mater 13: 3422–3435.Google Scholar
  17. 17.
    17 Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT (1997) Sol–gel synthesis of organized matter. Chem Mater 9: 2300–2310Google Scholar
  18. 18.
    18 Moreau JE, Vellutini L, Chi Man MW, Bied C (2003) Shape-controlled bridged silsesquioxanes: hollow tubes and spheres. Chem Eur J 9: 1594–1599Google Scholar
  19. 19.
    19 Moreau JE, Vellutini L, Chi Man MW, Bied C (2001) New hybrid organic–inorganic solids with helical morphology via H-bond mediated sol–gel hydrolysis of silyl derivatives of chiral (R,R)- or (S,S)-diureidocyclohexane. J Amer Chem Soc 123: 1509–1510Google Scholar
  20. 20.
    20 Vallé K, Belleville P, Pereira F, Sanchez C (2006) Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nat Mater 5: 107–111Google Scholar
  21. 21.
    21 Alauzun J, Mehdi A, Reye C, Corriu RJP (2005) Hydrophilic conditions: a new way for self-assembly of hybrid silica containing long alkylene chains. J Mater Chem 15: 841–843Google Scholar
  22. 22.
    22 Carlos LD, de Zea Bermudez V, Nunes SC, Silva NJO, Sá Ferreira RA, Santilli CV, Ostrovskii D, Amaral VS, Rocha J (2006) Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkylene/siloxane hybrids. Adv Mater 19: 341–348Google Scholar
  23. 23.
    23 Liu N, Yu K, Smarsly B, Dunphy DR, Jiang Y-B, Brinker CJ (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124: 14540–1455Google Scholar
  24. 24.
    24 Moreau JE, Vellutini L, Chi Man MW, Bied C, Dieudonné P, Bantignies J-L, Sauvajol J-L (2005) Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions. Chem Eur J 11: 1527–1537Google Scholar
  25. 25.
    25 Moreau JJE, Pichon BP, Chi Man MW, Bied C, Pritzkow H, Bantignies J-L, Dieudonné P, Sauvajol J-L (2004) A Better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem Int Ed 43: 203–206Google Scholar
  26. 26.
    26 Parikh AN, Schivley MA, Koo E, Seshadri K, Aurentz D, Muelle r K, Allara DL (1997) n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-Octadecyltrichlorosilane. J Am Chem Soc 119: 3135–3143Google Scholar
  27. 27.
    27 Shimojima A, Sugahara Y, Kuroda K (1997) Inorganic–organic layered materials derived via the hydrolysis and polycondensation of trialkoxy(alkyl)silanes. Bull Chem Soc Jpn 70: 2847–2853Google Scholar
  28. 28.
    28 Tang H, Sun J, Jiang J, Zhou X, Hu T, Xie P, Zhang R (2002) A novel aryl amide-bridged ladderlike polymethylsiloxane synthesized by an amido H-bonding self-assembled template. J Am Chem Soc 124: 10482–10488Google Scholar
  29. 29.
    29 Arkles B (2001) Commercial applications of sol–gel-derived hybrid materials. Mater Res Soc Bull 26: 402–408.Google Scholar
  30. 30.
    30 Avnir D, Braun S, Lev O, Levy D, Ottolenghi M (1994) Organically-doped sol–gel porous glasses: chemical sensors, enzymatic sensors, electro-optical materials, luminescent materials and photochromic materials. In: Klein L (ed) Sol–Gel Optics, Processing and Applications. Kluwer, Dordrecht, The Netherlands, ch 23, pp 539–582Google Scholar
  31. 31.
    31 Carlos LD, Sá Ferreira RA, de Zea Bermudez V (2003) Light emission from organic–inorganic hybrids materials and nanocomposites. In: Nalwa HS (ed) Handbook of Organic–Inorganic Hybrid Materials and Nanocomposites. American Scientific Publishers Morth Lewis Way, vol 1, pp 353–380Google Scholar
  32. 32.
    32 Carlos LD, Sá Ferreira RA, de Zea Bermudez V (2007) Hybrid materials for optical applications. In: Kickelbick G (ed) Hybrid Materials: Synthesis, Characterization, and Applications. Wiley, Weinheim Google Scholar
  33. 33.
    33 Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15: 3559–3592Google Scholar
  34. 34.
    Sanchez C, Lebeau B (2001) Hybrid organic–inorganic materials. In: Loy DA (eds) Mater Res Soc Bull 26: 377–38734 Sanchez C, Lebeau B (2001) Hybrid organic–inorganic materials. In: Loy DA (eds) Mater Res Soc Bull 26: 377–387 Google Scholar
  35. 35.
    35 Sanchez C, Lebeau B, Chaput F, Boilot J-P (2003) Optical properties of functional hybrid organic–inorganic nanocomposites. In: Romero PG, Sanchez C (eds) Functional Hybrid Materials. Wiley, Weinheim, pp. 122–168Google Scholar
  36. 36.
    36 Scott BJ, Wirnsberger G, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem Mater 13: 3140–3150Google Scholar
  37. 37.
    37 Seddon AB (1997) Potential of organic–inorganic hybrid materials derived by sol–gel for photonic applications. In: Andrews MP, Najafi SI (eds) Sol–gel and polymer photonic devices. SPIE – The International Society of Optical Engineering – Series, Bellingham, WA, vol CR68, pp 143–171Google Scholar
  38. 38.
    38 Ptatschek V, Schreder B, Herz K, Hilbert U, Ossau W, Schottner G, Rahauser O, Bischof T, Lermann G, Materny A, Kiefer W, Bacher G, Forchel A, Su D, Giersig M, Muller G, Spanhel L (1997) Sol–gel synthesis and spectroscopic properties of thick nanocrystalline CdSe films. J Phys Chem B 101: 8898–8906Google Scholar
  39. 39.
    39 Jin T, Inoue S, Machida K, Adachi G (1997) Photovoltaic cell characteristics of hybrid silicon devices with lanthanide complex phosphor-coating film. J Electrochem Soc 144: 4054–4058Google Scholar
  40. 40.
    40 Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Sanchez C (2006) All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv Mater 18: 2579–2582Google Scholar
  41. 41.
    41 Faloss M, Canva M, Georges P, Brun A, Chaput F, Boilot JP (1997) Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels. Appl Opt 36: 6760–6763Google Scholar
  42. 42.
    42 Schaudel B, Guermeur C, Sanchez C, Nakatani K, Delaire JA (1997) Spirooxazine- and spiropyran-doped hybrid organic–inorganic matrices with very fast photochromic responses. J Mater Chem 7: 61–65Google Scholar
  43. 43.
    43 Chaumel F, Jiang H, Kakkar A (2001) Sol–gel materials for second-order nonlinear optics. Chem Mater 13: 3389–3395Google Scholar
  44. 44.
    44 Kim HK, Kang S-J, Choi S-K, Min Y-H, Yoon C-S (1999) Highly efficient organic–inorganic hybrid nonlinear optic materials via sol–gel process: synthesis, optical properties, and photobleaching for channel waveguides. Chem Mater 11: 779–788Google Scholar
  45. 45.
    45 Aubonnet S, Barry HF, von Bultzingslowen C, Sabattie J-M, MacCraith BD (2003) Photo-patternable optical chemical sensors based on hybrid sol–gel materials. Electronics Lett 39: 913–914Google Scholar
  46. 46.
    46 Goncalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SJL Messaddeq Y, (2002) Low optical loss planar waveguides prepared in an organic–inorganic hybrid system. App Phys Lett 81: 28Google Scholar
  47. 47.
    47 Levy D, Del Monte F, Otón JM, Fiksman G, Matías I, Datta P, López-amo M (1997) Photochromic doped sol–gel materials for fiber-optic devices. J Sol–Gel Sci Tech 8: 931–935Google Scholar
  48. 48.
    48 Rottman C, Grader G, De Hazan Y, Melchior S, Avnir D (1999) Surfactant-induced modification of dopants reactivity in sol–gel matrixes. J Am Chem Soc 12: 8533–8543Google Scholar
  49. 49.
    49 Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller Fiedler R, Rösch O (2001) ORMOCER®s for optical interconnection technology. J. Sol–Gel Sci Technol 20: 181–186Google Scholar
  50. 50.
    50 Casalboni M, Senesi R, Prosposito P, De Matteis F, Pizzoferrato R (1997) Rigid-cage effects on the optical properties of the dye 3,3-diethyloxadicarbocyanine incorporated in silica-gel glasses. Appl Phys Lett 70: 2969–2971Google Scholar
  51. 51.
    51 Najafi IS (1998) Sol–gel glass waveguide and grating on silicon. J Lightwave Technol 16: 1640–1642Google Scholar
  52. 52.
    52 Yoon KB, Bae B-S, Popall M (2005) Fabrication of low-loss waveguides using organic–inorganic hybrid materials. J Nonlinear Optic Phys Mater 14: 399–407Google Scholar
  53. 53.
    53 Dantas de Morais T, Chaput F, Lahlil K, Boilot J-P (1999) Hybrid organic–inorganic light-emitting diodes. Adv Mater 11: 107–112Google Scholar
  54. 54.
    54 Mitzi DB, Chondroudis K, Kagan CR (2001) Organic–inorganic electronics. IBM J Res Dev 45: 29–45Google Scholar
  55. 55.
    55 Bekiari V, Lianos P (1998) Tunable Photoluminescence from a material made by the interaction between (3-Aminopropyl)triethoxysilane and organic acids. Chem Mater 10: 3777–3779Google Scholar
  56. 56.
    56 Bekiari V, Lianos P (1998) Characterization of photoluminescence from a material made by interaction of (3-aminopropyl)triethoxysilane with acetic acid. Langmuir 14: 3459–3461Google Scholar
  57. 57.
    57 Bekiari V, Stathatos E, Lianos P, Stangar UL, Orel B, Judeinstein P (2000) Optimization of the intensity of luminescence emission from silica/poly(ethylene oxide) and silica/poly(propylene oxide) nanocomposite gels. Chem Mater 12: 3095–3099Google Scholar
  58. 58.
    58 Carlos LD, Sá Ferreira RA, de Zea Bermudez V, Ribeiro SJL (2001) Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Func Mater 11: 111–115Google Scholar
  59. 59.
    59 Carlos LD, Sá Ferreira RA, Nobre SS, Man MWC, Moreau JJE, Bied C, Pichon B (2006) Photoluminescence changes induced by self-organisation in bridged silsesquioxanes. Mater Sci Forum 514–516: 118–122Google Scholar
  60. 60.
    60 Carlos LD, Sá Ferreira RA, Pereira RN, Assunção M, de Zea Bermudez V (2004) White-light emission of amine-functionalized organic–inorganic hybrids: emitting centers and recombination mechanisms. J Phys Chem B 108: 14924–14932Google Scholar
  61. 61.
    61 Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) White phosphors from a silicate-carboxylate sol–gel precursor that lack metal activator ions. Science 276: 1826–1828Google Scholar
  62. 62.
    62 Uchida Y, Nobu Y-I, Momiji I, Matsui K (2000) Luminescence of silica-pillared clays and gels derived from aminofunctional silanes. J. Sol–Gel Sci Tech, 19: 705–709Google Scholar
  63. 63.
    63 Fu LS, Sá Ferreira RA, Rocha J, de Zea Bermudez V, Hungerford G, Carlos LD (2008) Photoluminescence and quantum yields of organic–inorganic hybrids prepared through formic acid solvolysis. Opt Mater 30: 1058–1064Google Scholar
  64. 64.
    64 Fu LS, Sá Ferreira RA, Silva NJO, Carlos LD, de Zea Bermudez V, Rocha J, (2004) Photoluminescence and quantum yields of urea and urethane cross-linked nanohybrids derived from carboxylic acid solvolysis. Chem Mater 16: 1507–1516Google Scholar
  65. 65.
    65 Stathatos E, Lianos P, Stangar UL, Orel B (2001) Study of laser action of Coumarine-153 incorporated in sol–gel made silica/poly(propylene oxide) nanocomposite gels. Chem Phys Lett 345: 381–385Google Scholar
  66. 66.
    66 Oliveira DC, Messaddeq Y, Dahmouche K, Ribeiro SJL, Gonçalves RR, Vesperini A, Gindre D, Nunzi J-M (2006) Distributed feedback multipeak laser emission in Rhodamine 6G doped organic–inorganic hybrids. J Sol–Gel Sci Techn 40:359–363Google Scholar
  67. 67.
    67 Carlos LD, Messaddeq Y, Brito HF, Sá Ferreira RA, de Zea Bermudez V, Ribeiro SJL (2000) Full-color phosphors from europium(III)-based organosilicates. Adv Mater 12: 594–598Google Scholar
  68. 68.
    68 Carlos LD, Sá Ferreira RA, Rainho JP, de Zea Bermudez V (2002) Fine-tuning of the chromaticity of the emission color of organic–inorganic hybrids co-doped with EuIII, TbIII, and TmIII. Adv Func Mat 12: 819–823Google Scholar
  69. 69.
    69 Gonçalves MC, de Zea Bermudez V, Sá Ferreira RA, Ostrovskii D, Rocha J, Carlos LD (2004) Optically functional di-urethanesil nanohybrids containing Eu3+ ions. Chem Mater 16: 2530–2543Google Scholar
  70. 70.
    70 Sá Ferreira RA, Carlos LD, de Zea Bermudez V (1999) Excitation energy dependence of luminescent sol–gel organically modified silicates. Thin Solid Films 343: 476–480Google Scholar
  71. 71.
    71 Sá Ferreira RA, Carlos LD, de Zea Bermudez V (2004) Luminescent organic–inorganic nanohybrids. In: Nalwa HS (eds) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, North Lewis Way, California, vol 4, pp 719–762Google Scholar
  72. 72.
    72 Sá Ferreira RA, Carlos LD, de Zea Bermudez V, Molina C, Dahmouche K, Messaddeq Y, Ribeiro SJL (2003) Room temperature visible/infrared emission and energy transfer in Nd3+-based organic–inorganic hybrids. J Sol–Gel Sci Technol 26: 315–319Google Scholar
  73. 73.
    73 Sá Ferreira RA, Carlos LD, Gonçalves RR, Ribeiro SJL, de Zea Bermudez V (2001) Energy-transfer mechanisms and emission quantum yields in Eu3+-based siloxane-poly(oxyethylene) nanohybrids. Chem Mater 13: 2991–2998Google Scholar
  74. 74.
    74 Gonçalves MC, Silva NJO, de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Dahmouche K, Santilli CV, Ostrovskii D, Correia Vilela IC, Craievich AF (2005) Local structure and near-infrared emission features of neodymium-based amine functionalized organic–inorganic hybrids. J Phys Chem B 109: 20093–20104Google Scholar
  75. 75.
    75 Lima PP, Sá Ferreira RA, Freire RO, Almeida Paz FA, Fu L, Alves JrS, Carlos LD, Malta OL (2006) Spectroscopic study of a UV-photostable organic–inorganic hybrids incorporating an Eu3+ β-diketonate complex. Chem Phys Chem 7: 735–746Google Scholar
  76. 76.
    76 Pope EJA, Mackenzie JD (1986) Sol–gel processing of silica: II. The role of the catalyst. J Non-Cryst Solids 87: 185–198Google Scholar
  77. 77.
    77 Tannev PT, Pinnavaia TJ (1996) Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271: 1267–1269Google Scholar
  78. 78.
    78 Attard GS, Glyde JC, Göltner CG (1995) Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378: 366–367Google Scholar
  79. 79.
    79 Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385: 420–423Google Scholar
  80. 80.
    80 Burkett SL, Sims SD, Mann S (1996) Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem Commun 11: 1367–1368Google Scholar
  81. 81.
    81 Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic–organic mesoporous silicates – nanoscopic reactors coming of age. Adv Mater 12: 1403–1419Google Scholar
  82. 82.
    82 Meng QG, Boutinaud P, Franville A-C, Zhang HJ, Mahiou R (2003) Preparation and characterization of luminescent cubic MCM-48 impregnated with an Eu3+ β-diketonate complex. Micropor Mesopor Mat 65: 127–136Google Scholar
  83. 83.
    83 Fu LS, Zhang HJ, Boutinaud P (2001) Preparation, characterization and luminescent properties of MCM-41 type materials impregnated with rare earth complex. J Mater Sci Techno 17: 293–298Google Scholar
  84. 84.
    84 Corriu RJP, Embert F, Guari Y, Mehdi A, Reye C (2001) A simple route to organic–inorganic hybrid materials containing Eu3+ complexes. Chem Commun 1: 1116–1117Google Scholar
  85. 85.
    85 Fowler CE, Mann S, Lebeau B (1998) Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem Commun 17: 1825–1826Google Scholar
  86. 86.
    86 Fu LS, Sá Ferreira RA, Valente A, Rocha J, Carlos LD (2006) Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41. Micropor Mesopor Mater 94: 185–192Google Scholar
  87. 87.
    87 Grosso D, Cagnol F, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14: 309–322Google Scholar
  88. 88.
    88 Rhodes KH, Davis SA, Caruso F, Zhang B, Mann S (2000) Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chem Mater 12: 2832–2834Google Scholar
  89. 89.
    89 Molina C, Moreira PJ, Gonçalves RR, Sá Ferreira RA, Messaddeq Y, Ribeiro SJL, Soppera O, Leite AP, Marques PVS, de Zea Bermudez V, Carlos LD (2005) Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. J Mater Chem 15: 3937–3945Google Scholar
  90. 90.
    André PS, Nogueira R, Sá Ferreira RA, Gualdino A, Carlos LD, Silva NJO, Fu L, Teixeira ALJ, Pellegrini LP, Monteiro P (2006) Low cost UV patternable organic–inorganic sol–gel siloxanepoly(oxyethylene) materials for integrated optics. Proceedings ICTON 223: WeC16–WeC1790 André PS, Nogueira R, Sá Ferreira RA, Gualdino A, Carlos LD, Silva NJO, Fu L, Teixeira ALJ, Pellegrini LP, Monteiro P (2006) Low cost UV patternable organic–inorganic sol–gel siloxanepoly(oxyethylene) materials for integrated optics. Proceedings ICTON 223: WeC16–WeC17 Google Scholar
  91. 91.
    Sá Ferreira RA, Nogueira R, Gualdino A, Carlos LD, Silva NJO, Fu L, Teixeira ALJ, Pellegrino LP, Monteiro P, André PS (2006) Development of integrated photonic waveguides based on organic–inorganic hybrids. Proceedings of the International Conference on Telecomunications ICT91Sá Ferreira RA, Nogueira R, Gualdino A, Carlos LD, Silva NJO, Fu L, Teixeira ALJ, Pellegrino LP, Monteiro P, André PS (2006) Development of integrated photonic waveguides based on organic–inorganic hybrids. Proceedings of the International Conference on Telecomunications ICT Google Scholar
  92. 92.
    92 Schubert U, Völkel T, Moszner N (2001) Mechanical properties of an inorganic–organic hybrid polymer cross-linked by the cluster Zr4O2(methacrylate)12. Chem Mater 13: 3811–3812Google Scholar
  93. 93.
    93 Brankova T, Bekiari V, Lianos P (2003) Photoluminescence from sol–gel organic–inorganic hybrid gels obtained through carboxylic acid solvolysis. Chem Mater 15: 1855–1859Google Scholar
  94. 94.
    94 Carlos LD, de Zea Bermudez V, Sá Ferreira RA, Marques L, Assunção M (1999) Sol–gel derived urea cross-linked organically modified silicates. 2. Blue-light emission. Chem Mater 11: 58–588Google Scholar
  95. 95.
    95 Nunes SC, de Zea Bermudez V, Cybinska J, Sá Ferreira RA, Legendziewicz J, Carlos LD, Silva MM, Smith MJ, Ostrovskii, D Rocha J (2005) Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids. J Mat Chem 15: 3876–3886Google Scholar
  96. 96.
    96 Carlos LD, Sá Ferreira RA, Orion I, de Zea Bermudez V, Rocha J (2000) Sol–gel derived nanocomposite hybrids for full colour displays. J Lumin 87–89: 702–705Google Scholar
  97. 97.
    97 Sá Ferreira RA, Ferreira AL, Carlos LD (2006) Modelling the emission red-shift in amorphous semiconductors and in organic–inorganic hybrids using extended multiple trapping. Eur Phys J B 50: 371–378Google Scholar
  98. 98.
    98 Sá Ferreira RA, Ferreira AL, Carlos LD (2006) Modelling of the emission red-shift in organic–inorganic di-ureasil hybrids. J Non-Cryst Solids 352: 1225–1229Google Scholar
  99. 99.
    99 Bekiari V, Lianos, P Judeinstein P (1999) Efficient luminescent materials made by incorporation of terbium(III) and 2,2-bipyridine in silica/poly(ethylene oxide) hybrid gels. Chem Phys Lett 307: 310–316Google Scholar
  100. 100.
    100 Han Y, Lin J, Zhang H (2002) Photoluminescence of organic–inorganic hybrid SiO2 xerogels. Mater Lett 54: 389–396Google Scholar
  101. 101.
    101 Cordoncillo E, Guaita FJ, Escribano P, Philippe C, Viana B, Sanchez C (2001) Blue emitting hybrid organic–inorganic materials. Opt Mater 18: 309–320Google Scholar
  102. 102.
    102 Schmidt T, Lischka K, Zulehner W (1992) Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B 45: 8989–8994Google Scholar
  103. 103.
    103 Zhuravlev KS, Gilinsky AM, Kobitsky AY (1998) Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix. Appl Phys Lett 73: 2962–2964Google Scholar
  104. 104.
    104 Street RA (1981) Luminescence and recombination in hydrogenated amorphous-silicon. Adv Phys 30: 593–676Google Scholar
  105. 105.
    105 Koyama H, Ozaki T, Koshida N (1995) Decay dynamics of the homogeneously broadened photoluminescence from porous silicon. Phys Rev B 52: 11561–11564Google Scholar
  106. 106.
    106 Wrighton MS, Ginley DS, Morse DL (1974) Technique for the determination of absolute emission quantum yields of powdered samples. J Phys Chem 78: 2229–2233Google Scholar
  107. 107.
    107 Brill A, De Jager-Veenis AW (1976) Quantum efficiency standard for ultraviolet and visible excitation. J Electrochem Soc 123: 396–398Google Scholar
  108. 108.
    108 de Sá GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, Silva JrEF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196: 165–195Google Scholar
  109. 109.
    109 de Mello Donega C, Alves Jr S, de Sá GF (1996) Europium(III) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices. Chem Commu 10:1199–1200Google Scholar
  110. 110.
    110 de Mello Donegá C, Ribeiro SJL, Gonçalves RR, Blasse G (1996) Luminescence and non-radiative processes in lanthanide squarate hydrates. J Phys Chem Solids 57: 1727–1734Google Scholar
  111. 111.
    111 Avnir D, Levy D, Reisfeld R (1984) The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G. J Phys Chem 88: 5956–5959Google Scholar
  112. 112.
    112 Hu L, Jiang Z (1998) Laser action in rhodamine 6G doped titania containing ormosils. Opt Commun 148: 275–280Google Scholar
  113. 113.
    113 Casalboni M, De Matteis F, Prosposito P, Pizzoferrato R (1999) Optical investigation of infrared dyes in hybrid thin films. Appl Phys Lett 75: 2172–2174Google Scholar
  114. 114.
    114 Nhung TH, Canva M, Chaput F, Goudket H, Roger G, Brun A, Manh DD, Hung ND, Boilot JP (2004) Dye energy transfer in xerogel matrices and application to solid-state dye lasers. Opt Commun 232: 343–351Google Scholar
  115. 115.
    115 Yang PD, Wirnsberger G, Huang HC, Cordero SR, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka BF, Buratto SK, Stucky GD (2000) Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 287: 465–467Google Scholar
  116. 116.
    116 Hernandez R, Franville A-C, Minoofar P, Dunn B, Zink JI (2001) Controlled placement of luminescent molecules and polymers in mesostructured sol–gel thin films. J Am Chem Soc 123: 1248–1249Google Scholar
  117. 117.
    117 Bartl MH, Boettcher SW, Hu EL, Stucky GD (2004) Dye-activated hybrid organic–inorganic mesostructured titania waveguides. J Am Chem Soc 126: 10826–10827Google Scholar
  118. 118.
    118 Blasse G, Grabmaier BC (1994) title type="book">Luminescent Materials. Springer, Berlin Google Scholar
  119. 119.
    119 Hüfner S (1978) Optical Spectra of Transparent Rare Earth Compounds. Academic Press, New York.Google Scholar
  120. 120.
    120 Lehn J-M (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed Engl 29:1304–1319Google Scholar
  121. 121.
    121 Sabbatini N, Guardigli M, Lehn J-M (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123: 201–228Google Scholar
  122. 122.
    122 McGehee MD, Bergstedt T, Zhang C, Saab AP, O'Regan MB, Bazan GC, Srdanov VI, Heeger AJ (1999) Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv Mater 11: 1349–1354Google Scholar
  123. 123.
    123 Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87: 8049–8055Google Scholar
  124. 124.
    124 Werts MHV, Woudenberg RH, Emmerink PG, van Gassel R, Hofstraat JW, Verhoeven JW (2000) A near-infrared luminescent label based on YbIII ions and its application in a fluoroimmunoassay. Angew Chem Int Ed 39: 4542–4544Google Scholar
  125. 125.
    125 Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102: 2357–2368Google Scholar
  126. 126.
    126 Reyes R, Cremona M, Teotônio EES, Brito HF, Malta OL (2004) Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend. Chem Phys Lett 396: 54–58Google Scholar
  127. 127.
    127 Reyes R, Cremona M, Teotônio EES, Brito HF, Malta OL (2004) Electrophosphorescence emission in organic light-emitting diodes based on (Sm + Eu) complexes. Thin Solid Films 469: 59–64Google Scholar
  128. 128.
    128 Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34: 1048–1077Google Scholar
  129. 129.
    129 Binnemans K (2005) Rare-earth beta-diketonates. In: Gschneidner Jr KA, Bünzli J-CG, Pecharsky VK (eds) Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam, vol 35, pp 107–272Google Scholar
  130. 130.
    130 Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Photophysics and structure of selected lanthanide compounds. Coord Chem Rev 249: 2489–2509Google Scholar
  131. 131.
    131 Samelson H, Lempicki A, Brecher C, Brophy V A (1964) Room temperature operation of europium chelate liquid laser. Appl Phys Lett 5: 173–174Google Scholar
  132. 132.
    132 Bjorklun S, Kellerma G, Hurt CR, Mcavoy N, Filipesc N (1967) Laser action from terbium trifluoroacetylacetonate in rho-dioxane and acetonitrile at room temperature. Appl Phys Lett 10: 160–162Google Scholar
  133. 133.
    133 Whittaker B (1970) Low threshold laser action of a rare earth chelate in liquid and solid host media. Nature 228: 157–158Google Scholar
  134. 134.
    134 Carlos, LD, Donega C, De Mello, Albuquerque RQ, S Alves Jr, Menezes JFS, Malta OL (2003) Highly luminescent Europium(III) complexes with naphtoiltrifluoroacetone and dimethyl sulfoxide. Mol Phys 101: 1037–1045Google Scholar
  135. 135.
    135 Gameiro CG, Achete CA, Simão RA, da Silva JrEF, Santa-Cruz PA (2002) Molecular UV dosimeters of lanthanide complex thin films: AFM as a function of ultraviolet exposure. J Alloys Comp 344: 385–388Google Scholar
  136. 136.
    136 Gameiro CG, da Silva JrEF, Alves JrS, de Sá GF, Santa-Cruz PA (2001) Lanthanide complexes dispersed in enamel: a promising new material for photonic devices. J Alloys Comp 323–324: 820–823Google Scholar
  137. 137.
    137 Nockemann P, Beurer E, Driessen K, Van Deun R, Van Hecke K, Van Meervelt L, Binnemans K (2005) Photostability of a highly luminescent europium -diketonate complex in imidazolium ionic liquids. Chem Commun 34: 4354–4356Google Scholar
  138. 138.
    138 Pagnot T, Audebert P, Tribillon G (2000) Photostability study of europium dibenzolymethide embedded in polystyrene thin films with high concentration. Chem Phys Lett 322: 572–578Google Scholar
  139. 139.
    139 Qian G, Wang M (2000) Synthesis in situ, characterization, and photostability of europium β-diketone chelates in organically modified silicates (ORMOSILs). J Am Ceram Soc 83: 703–708Google Scholar
  140. 140.
    140 Xu Q, Li L, Li B, Yu J, Xu R (2000) Encapsulation and luminescent property of tetrakis (1-(2-thenoyl)-3,3,3-trifluoracetate) europium N-hexadecyl pyridinium in modified Si–MCM-41. Micropor Mesopor Mat 38: 351–358Google Scholar
  141. 141.
    141 Matthews LR, Knobbe ET (1993) Luminescence behavior of europium complexes in sol–gel derived host materials. Chem Mater 5: 1697–1700Google Scholar
  142. 142.
    142 Matthews LR, Wang X-J, Knobbe ET (1994) Concentration effects on the luminescence behavior of europium (III) chloride- and organoeuropium-doped silicate gels. J Non-Cryst Solids 178: 44–51Google Scholar
  143. 143.
    143 Serra OA, Nassa EJ, Zapparolli G, Rosa ILV (1994) Organic complexes of Eu3+ supported in functionalized silica gel: highly luminescent material. J Alloys Compd 207–208: 454–456Google Scholar
  144. 144.
    144 Serra OA, Nassa EJ, Rosa ILV (1997) Tb3+ molecular photonic devices supported on silica gel and functionalized silica gel. J Lumin 72–74: 263–265Google Scholar
  145. 145.
    145 Jin T, Inoue S, Tsutsumi S, Machida K, Adachi G (1998) Luminescence properties of lanthanide complexes incorporated into sol–gel derived inorganic–organic composite materials. J Non-Cryst Solids 223: 123–132Google Scholar
  146. 146.
    146 Li H, Inoue S, Machida K, Adachi G (1999) Preparation and luminescence properties of organically modified silicate composite phosphors doped with an europium(III) β-diketonate complex. Chem Mater 11: 3171–3176Google Scholar
  147. 147.
    147 Li H, Inoue S, Machida K, Adachi G (2000) Preparation and luminescence properties of inorganic–organic hybrid materials doped with lanthanide (III) complexes. J Lumin 87–89: 1069–1072Google Scholar
  148. 148.
    148 Kurokawa Y, Ishizaka T, Ikoma T, Tero-Kubota S (1998) Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol–gel method. Chem Phys Lett 287: 737–741Google Scholar
  149. 149.
    149 Zaiton MA, Kim T, Lin CT (1998) Observation of electron-hole carrier emission in the Eu3+-doped silica xerogel. J Phys Chem B 102: 1122–1125Google Scholar
  150. 150.
    150 Zaiton MA, Goken DM, Bailey LS, Kim T, Lin CT (2000) Thermoanalysis and emission properties of Eu3+/Eu2+ in Eu3+-doped xerogels. J Phys Chem B 104: 189–196Google Scholar
  151. 151.
    151 Tanner PA, Yan B, Zhang HJ (2000) Preparation and luminescence properties of sol–gel hybrid materials incorporated with europium complexes. J Mater Sci 35: 4325–4328Google Scholar
  152. 152.
    152 Ji X, Li B, Jiang S, Dong D, Zhang H, Jing XB, Jiang BZ (2000) Luminescent properties of organic–inorganic hybrid monoliths containing rare-earth complexes. J Non-Cryst Solids 275: 52–58Google Scholar
  153. 153.
    153 Li HR, Zhang HJ, Lin J, Wang SB, Yang KY (2000) Preparation and luminescence properties of ormosil material doped with Eu(TTA)3phen complex. J Non-Cryst Solids 278: 218–222Google Scholar
  154. 154.
    154 Molina C, Dahmouche K, Santilli CV, Craievich AF, Ribeiro SJL (2001) Structure and luminescence of Eu3+-doped class I siloxane-poly(ethylene glycol) hybrids. Chem Mater 13: 2818–2823Google Scholar
  155. 155.
    155 Ishizaka T, Nozaki R, Kurokawa Y (2002) Luminescence properties of Tb3+ and Eu3 + -doped alumina films prepared by sol–gel method under various conditions and sensitized luminescence. J Phys Chem Solids 63: 613–617Google Scholar
  156. 156.
    156 Cordoncillo E, Viana B, Escribano P, Sanchez C (1998) Room temperature synthesis of hybrid organic–inorganic nanocomposites containing Eu2+. J Mater Chem 8: 507–509Google Scholar
  157. 157.
    157 Franville A-C, Zambon D, Mahiou R, Chou S, Troin Y, Cousseins JC (1998) Synthesis and optical features of an europium organic–inorganic silicate hybrid. J Alloys Compd 275–277: 831–834Google Scholar
  158. 158.
    158 Franville A-C, Zambon D, Mahiou R, Troin Y (2000) Luminescence behavior of sol–gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater 12: 428–435Google Scholar
  159. 159.
    159 Franville A-C, Mahiou R, Zambon D, Cousseins J-C (2001) Molecular design of luminescent organic–inorganic hybrid materials activated by europium (III) ions. Solid State Sci 3: 211–222Google Scholar
  160. 160.
    160 Dong D, Jiang S, Men Y, Ji X, Jiang B (2000) Nanostructured hybrid organic–inorganic lanthanide complex films produced in situ via a sol–gel approach. Adv Mater 12: 646–649Google Scholar
  161. 161.
    161 Embert F, Mehdi A, Reyé C, Corriu RJP (2001) Synthesis and luminescence properties of monophasic organic–inorganic hybrid materials incorporating europium(iii). Chem Mater 13: 4542–4549Google Scholar
  162. 162.
    162 Xu QH, Fu L, Li LS, Zhang HJ, Xu RR (2000) Preparation, characterization and photophysical properties of layered zirconium bis(monohydrogenphosphate) intercalated with rare earth complexes. J Mater Chem 10: 2532–2536Google Scholar
  163. 163.
    163 Fu LS, Meng QG, Zhang HJ, Wang SB, Yang KY, Ni JZ (2000) In situ synthesis of terbium-benzoic acid complex in sol–gel derived silica by a two-step sol–gel method. J Phys Chem Solids 61: 1877–1881Google Scholar
  164. 164.
    164 Liu F, Fu L, Wang J, Liu Z, Li H, Zhang H (2002) Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network. Thin Solid Films 419: 178–182Google Scholar
  165. 165.
    165 Li HR, Lin J, Zhang HJ, Fu L, Meng QG, Wang (2002) Preparation and luminescence properties of hybrid materials containing Europium(III) complexes covalently bonded to a silica matrix. Chem Mater 14: 3651–3655Google Scholar
  166. 166.
    166 Guo JF, Fu L, Li HR, Zheng YX, Meng QG, Wang SB, Liu FY, Wang J, Zhang HJ (2003) Preparation and luminescence properties of ormosil hybrid materials doped with Tb(Tfacac)3phen complex via a sol–gel process. Mat Lett 57: 3899–3903Google Scholar
  167. 167.
    167 Liu F, Fu L, Wang J, Meng Q, Li H, Guo J, Zhang H (2004) Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network. New J Chem 28: 1137–1141Google Scholar
  168. 168.
    168 Sun LN, Zhang HJ, Meng QG, Liu FY, Fu L, Peng CY, Yu JB, Zheng GL, Wang SB (2005) Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application. J Phys Chem B 109: 6174–6182Google Scholar
  169. 169.
    169 Sun LN, Zhang HJ, Fu L, Liu FY, Meng QG, Peng CY, Yu JB (2005) A new sol–gel material doped with an erbium complex and its potential optical-amplification application. Adv Funct Mater 15: 1041–1048Google Scholar
  170. 170.
    170 Bredol M, Jüstel T, Gutzov S (2001) Luminescence of sol–gel-derived silica doped with terbium-benzoate complex. Opt Mater 18: 337–341Google Scholar
  171. 171.
    171 Binnemans K, Lenaerts P, Driesen K, Görller-Walrand C (2004) A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass. J Mater Chem 14: 191–195Google Scholar
  172. 172.
    172 Driesen K, Van Deun R, Görller-Walrand C, Binnemans K (2004) Near-infrared luminescence of lanthanide calcein and lanthanide dipicolinate complexes doped into a silica-peg hybrid material. Chem Mater 16: 1531–1535Google Scholar
  173. 173.
    173 Lenaerts P, Storms A, Mullens J, D'Haen J, Görller-Walrand C, Binnemans K, Driesen K (2005) Thin films of highly luminescent lanthanide complexes covalently linked to an organic–inorganic hybrid material via 2-substituted imidazo[4,5-f]-1,10-phenanthroline groups. Chem Mater 17: 5194–5201Google Scholar
  174. 174.
    174 Lenaerts P, Görller-Walrand C, Binnemans K (2006) Luminescent europium(III) and terbium(III) nicotinate complexes covalently linked to a 1,10-phenanthroline functionalised sol–gel glass. J Lumin 117: 163–169Google Scholar
  175. 175.
    175 de Zea Bermudez V, Carlos LD, Duarte MC, Silva MM, Silva CJ, Smith MJ, Assunção M, Alcácer L (1998) Novel class of luminescent polymers obtained by the sol–gel approach. J Alloys Compd 275–277: 21–26Google Scholar
  176. 176.
    176 Carlos LD, de Zea Bermudez V, Sá Ferreira RA (1999) Multi-wavelength europium-based hybrid phosphors. J Non-Cryst Solids 247: 203–208Google Scholar
  177. 177.
    177 Silva MM, de Zea Bermudez V, Carlos LD, Passos de Almeida AP, Smith MJ (1999) Sol–gel processing and structural study of europium-doped hybrid materials. J Mater Chem 9: 1735–1740Google Scholar
  178. 178.
    178 Carlos LD, Sá Ferreira RA, de Zea Bermudez V, Molina C, Bueno LA, Ribeiro SJL (1999) White light emission of Eu3+-based hybrid xerogels. Phys Rev B 60: 10042–10053Google Scholar
  179. 179.
    179 Carlos L D, Sá Ferreira R A, de Zea Bermudez V (2000) An intra-Nd3+ visible to infrared conversion process in hybrid xerogels. Electrochimica Acta 45: 1555–1560Google Scholar
  180. 180.
    180 de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Molina C, Ribeiro SJL (2001) Coordination of Eu3+ ions in siliceous nanohybrids containing short polyether chains and bridging urea cross-links. J Phys Chem B 105: 3378–3386Google Scholar
  181. 181.
    181 de Zea Bermudez V, Ostrovskii D, Gonçalves MC, Carlos L D, Sá Ferreira R A, Reis L, Jacobsson P (2004) Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ ions Part 1. Coordinating ability of the host matrix. Phys Chem Chem Phys 6: 638–648Google Scholar
  182. 182.
    182 de Zea Bermudez V, Ostrovskii D, Lavoryk S, Gonçalves MC, Carlos LD (2004) Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ ions Part 2. Ionic association. Phys Chem Chem Phys 6: 649–658Google Scholar
  183. 183.
    183 Carlos LD, Sá Ferreira RA, Gonçalves MC, de Zea Bermudez V (2004) Local coordination of Eu(III) in organic–inorganic amine functionalized hybrids. J Alloys Compd 374: 50–55Google Scholar
  184. 184.
    184 de Zea Bermudez V, Ostrovskii D, Gonçalves MC, Lavoryk S, Carlos LD, Sá Ferreira RA (2005) Eu3+ coordination in an organic–inorganic hybrid matrix with methyl end-capped short polyether chains. J Phys Chem B 109: 7110–7119Google Scholar
  185. 185.
    185 Nunes SC, de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Morales E, Marques PVS, In: Organic–Inorganic Hybrid Materials-2004, Sanchez C, Schubert U, Laine RM, Chujo Y (eds) Mater Res Soc Symp Proc, Warrendale, PA, 2005, Vol 847, EE13311–6 Google Scholar
  186. 186.
    186 Fu LS, Sá Ferreira RA, Silva NJO, Fernandes JA, Ribeiro-Claro P, Gonçalves IS, de Zea Bermudez V, Carlos LD (2005) Structure–photoluminescence relationship in Eu(III) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis. J Mater Chem 15: 3117–3125Google Scholar
  187. 187.
    Lima PP, Pavithran R, Sá Ferreira RA, Alves Jr S, Carlos LD, Malta OL, Reddy MLP (2006) Synthesis, characterization, and luminescence properties of Eu3+ 3-phenyl-4-(4-toluoyl)-5-isoxazolonate based organic–inorganic hybrids. Eur J Inorg Chem 3923–3929187Lima PP, Pavithran R, Sá Ferreira RA, Alves Jr S, Carlos LD, Malta OL, Reddy MLP (2006) Synthesis, characterization, and luminescence properties of Eu3+ 3-phenyl-4-(4-toluoyl)-5-isoxazolonate based organic–inorganic hybrids. Eur J Inorg Chem 3923–3929 Google Scholar
  188. 188.
    188 Ribeiro SJL, Dahmouche K, Ribeiro CA, Santilli CV, Pulcinelli SH (1998) Study of hybrid silica-polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy. J Sol–Gel Sci Tecnol13: 427–432Google Scholar
  189. 189.
    189 Dahmouche K, Santilli CV, Pulcinelli SH, Craievich AF (1999) Small-angle X-ray scattering study of sol–gel-derived siloxane-PEG and siloxane-PPG hybrid materials. J Phys Chem B 103: 4937–4942Google Scholar
  190. 190.
    190 Dahmouche K, Santilli CV, da Silva M, Ribeiro CA, Pulcinelli SH, Craievich AF (1999) Silica–PEG hybrid ormolytes: structure and properties. J Non Cryst Solids 247: 108–113Google Scholar
  191. 191.
    191 Molina C, Ribeiro SJL, Dahmouche K, Santilli CV, Craievich AF (2000) EXAFS, SAXS and Eu3+ luminescence spectroscopy of sol–gel derived siloxane-polyethyleneoxide hybrids. J Sol–Gel Sci Tech 19: 615–620Google Scholar
  192. 192.
    192 Dahmouche K, Carlos LD, de Zea Bermudez V, Sá Ferreira RA, Passos de Almeida AP, Santilli CV, Craievich AF (2001) Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrid. J Mater Chem 11: 3249–3257Google Scholar
  193. 193.
    193 Molina C, Dahmouche K, Messaddeq Y, Ribeiro SJL, Silva MAP, de Zea Bermudez V, Carlos LD (2003) Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybrids. J Lumin 104: 93–101Google Scholar
  194. 194.
    194 Filho FAD, Ribeiro SJL, Gonçalves RR, Messaddeq Y, Carlos LD, de Zea Bermudez V, Rocha J (2004) Eu3+ doped polyphosphate–aminosilane organic–inorganic hybrids. J Alloys Compd 374: 74–78Google Scholar
  195. 195.
    195 Dahmouche K, Santilli CV, Pulcinelli SH, Sá Ferreira RA, Carlos LD, de Zea Bermudez V, Craievich AF (2006) Nanostructure and luminescent properties of sol–gel derived europium-doped amine functionalised hybrids. J Sol–Gel Sci Tech 37: 99–104Google Scholar
  196. 196.
    196 Moleski R, Stathatos E, Bekiari V, Lianos P (2002) Preparation of thin Ureasil films with strong photoluminescence based on incorporated europium–thenoyltrifluoroacetone–bipyridine complexes. Thin Solid Films 416: 279–283Google Scholar
  197. 197.
    197 Stathatos E, Lianos P, Lavrencic-Stangar U, Orel B (2002) A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol–gel route. Adv Mater 14: 354–357Google Scholar
  198. 198.
    198 Pope EJA, Mackenzie JD (1988) Nd-doped silica glass I: structural evolution in the sol–gel state. J Non-Cryst Solids 106: 236–241Google Scholar
  199. 199.
    199 Viana B, Koslova N, Ashehoug P, Sanchez C (1995) Optical properties of neodymium and dysprosium doped hybrid siloxane–oxide coatings. J Mater Chem 5: 719–724Google Scholar
  200. 200.
    200 Lochhead MJ, Bray K L (1995) Rare-Earth clustering and aluminum codoping in sol–gel silica: investigation using europium(III) fluorescence spectroscopy. Chem Mater 7: 572–577Google Scholar
  201. 201.
    201 Costa VC, Lochhead MJ, Bray KL (1996) Fluorescence line-narrowing study of Eu3+-doped sol–gel silica: effect of modifying cations on the clustering of Eu3+. Chem Mater 8: 783–790Google Scholar
  202. 202.
    202 Driesen K, Fourier S, Görller-Walrand C, Binnemans K (2003) Judd–Ofelt analysis of lanthanide doped silica–PEG hybrid sol–gels. Phys Chem Chem Phys 5: 198–202Google Scholar
  203. 203.
    203 Guo XM, Fu L, Zhang HJ, Carlos LD, Peng CY, Guo JF, Yu JB, Deng RP, Sun LN (2005) Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method. New J Chem 29: 1351–1358Google Scholar
  204. 204.
    204 Gago S, Fernandes JA, Rainho JP, Sá Ferreira RA, Pillinger M, Valente AA, Santos TM, Carlos LD, Ribeiro-Claro PJA, Gonçalves IS (2005) Highly luminescent tris(β-diketonate) europium(III) complexes immobilized in a functionalized mesoporous silica. Chem Mater 17: 5077–5084Google Scholar
  205. 205.
    205 Sun LN, Zhang HJ, Peng CY, Yu JB, Meng QG, Fu L, Liu FY, Guo XM (2006) covalent linking of near-infrared luminescent ternary lanthanide (Er3+, Nd3+, Yb3+) complexes on functionalized mesoporous MCM-41 and SBA-15. J Phys Chem B 110: 7249–7158Google Scholar
  206. 206.
    206 Pinna N, Garnweitner G, Beato P, Niederberger M, Antonietti M (2005) Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism. Small 1: 112–121Google Scholar
  207. 207.
    207 Karmaoui M, Sá Ferreira RA, Mane AT, Carlos LD, Pinna N (2006) Lanthanide-based lamellar nanohybrids: synthesis, structural characterization, and optical properties. Chem Mater 18: 4493–4499Google Scholar
  208. 208.
    208 Sá Ferreira RA, Karmaoui M, Nobre SS, Carlos LD, N Pinna (2006) Optical properties of lanthanide-doped lamellar nanohybrids. ChemPhysChem 7: 2215–2222Google Scholar
  209. 209.
    209 Karmaoui M, Sá Ferreira RA, Carlos LD, Pinna N (2007) Lanthanide-based lamellar nanohybrids: the case of erbium. Materi Sci Eng: C 27: 1368–1371Google Scholar
  210. 210.
    210 Isakawi M, Kuraki J, Ito S (1998) Preparation of Ce3+-doped inorganic–organic hybrid materials using functionalized silanes. J Sol–Gel Sci Technol 13: 587–591Google Scholar
  211. 211.
    211 Reisfeld R, Jørgenson CK (1987) In: Gschneider KA Jr., Eyring L (eds) Handbook on the Physics and Chemistry of Rare Earths. Elsevier Science, Amsterdam, vol. 9, pp. 61Google Scholar
  212. 212.
    212 Malta OL, dos Santos MAC, Thompson LC, Ito NK (1996) Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)(3) 1,10-phenanthroline complex. J Lumin 69: 77–84Google Scholar
  213. 213.
    213 Malta OL, Brito HF, Menezes JFS, Silva FRGE, Alves S, Farias FS, de Andrade AVM (1997) Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)(3) 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. J Lumin 75: 255–268Google Scholar
  214. 214.
    Carnall WT, Crosswhite H, Crosswhite HM (1977) Energy structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory Report, unnumbered214Carnall WT, Crosswhite H, Crosswhite HM (1977) Energy structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory Report, unnumbered Google Scholar
  215. 215.
    215 Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3 + in luminescent lanthanide complexes. Phys Chem Chem Phys 4:1542–1548Google Scholar
  216. 216.
    216 Li H, Inoue S, Ueda D, Machida K, Adachi G (1999) Preparation of transparent inorganic–organic composite phosphors incorporated with europium (III) complexes. Electrochem Solid State Lett 2:354–356Google Scholar
  217. 217.
    217 Hazenkamp MF, Blasse G (1999) Rare-earth ions adsorbed onto porous-glass – luminescence as a characterizing tool. Chem Mater 2: 105–110Google Scholar
  218. 218.
    218 Malta OL, Carlos LD (2003) Intensities of 4f-4f transitions in glass materials. Quimica Nova 26: 889–895Google Scholar
  219. 219.
    219 Carlos LD, Videira ALL (1994) Emission-spectra and local symmetry of the Eu3+ ion in polymer electrolytes. Phys Rev B 49: 11721–11728Google Scholar
  220. 220.
    220 Horrocks JrWD, Sudnick DR (1979) Lanthanide ion probes of structure in biology – laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water-molecules. J Am Chem Soc 101: 334–340Google Scholar
  221. 221.
    221 Supkowski RM, Horrocks JrWD (2002) On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorganica Chimica Acta 340: 44–48Google Scholar
  222. 222.
    222 Auzel F, Malta OL (1983) A scalar crystal-field strength parameter for rare-earth ions – meaning and usefulness. J Physique 44: 201–206Google Scholar
  223. 223.
    223 Malta OL, Antic-Fidancev E, Lemaitre-Blaise M, Milicic-Tang A, Taibi M (1995) The crystal-field strength parameter and the maximum splitting of the 7F1 manifold of the Eu3+ ion in oxides. J Alloys Compd 228: 41–44Google Scholar
  224. 224.
    224 Leavitt RP (1982) On the role of certain rotational invariants in crystal-field theory. J Chem Phys 77: 1661–1663Google Scholar
  225. 225.
    225 Jørgensen CK, (1962) Progr Inorg Chem 4:73Google Scholar
  226. 226.
    226 Newman DJ (1973) Slater parameter shifts in substituted lanthanide ions. J Phys Chem Solids 34: 541–545Google Scholar
  227. 227.
    227 Carlos, LD, Videira, ALL (1994) A mean radius for the first coordination shell in lanthanides. J Chem Phys 101: 8827–8830Google Scholar
  228. 228.
    228 Malta OL, Batista HJ, Carlos LD (2002) Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. Chem Phys 282: 21–30Google Scholar
  229. 229.
    229 Frey ST, De Horrocks JrW. (1995) On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of nephelauxetic parameters for all of the coordinating atoms. Inorg Chim Acta 229: 383–390Google Scholar
  230. 230.
    230 Carlos LD, Malta OL, Albuquerque RQ (2005) A covalent fraction model for lanthanide compounds. Chem Phys Lett 415: 238–242Google Scholar
  231. 231.
    231 Jørgensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. Mol Phys 8: 281–290Google Scholar
  232. 232.
    232 Etienne P, Coudray P, Moreau Y, Porque J (1998) Photocurable sol–gel coatings: channel waveguides for use at 1.55 μm. J Sol–Gel Sci Tech 13: 523–527Google Scholar
  233. 233.
    233 Najafi SI, Li CY, Andews M, Chiesham J, Lefebvre P, Mackenzie JD, Peyghambarian N (1995) Integrated optics devices by ultraviolet light imprinting in sol–gel silica glass. In: Armenise MN, Wong K.-K. (eds) Functional Photonics Integrated Circuits. SPIE, Washington vol 2401, pp 110–115Google Scholar
  234. 234.
    234 Moreau Y, Arguel P, Coudray P, Etienne P, Porque J, Signoret P (1998) Direct printing of gratings on sol–gel layers. Opt Eng 37: 1130–1135Google Scholar
  235. 235.
    235 Sá Ferreira RA, Molina C, Dahmouche K, Ribeiro SJL, Gonçalves RR, de Zea Bermudez V, Carlos LD (2005) Photoluminescence-structure relationships in ormosils for integrated optical devices. Mater Res Soc Symp Proc 847: EE10.7.1–EE10.7.6Google Scholar
  236. 236.
    236 Kahlenberg F, Popall M (2006) ORMOCER®s (organic–inorganic hybrid polymers) for telecom applications: structure/property correlations. Mater Res Soc Symp Proc 847: EE14.4.1Google Scholar
  237. 237.
    237 Etienne P, Coudray P, Porque J, Moreau Y (2000) Active erbium-doped organic–inorganic waveguide. Opt Commun 174: 413–418Google Scholar
  238. 238.
    238 Xiao-lei Z, Dennis L (2002) Sol–gel glass distributed feedback waveguide laser. Appl Phys Lett 80: 917–919Google Scholar
  239. 239.
    239 Zhang Y, Prasad PN, Burzynski R (1992) Second-order nonlinear optical properties of N-(4-nitrophenyl)-(s)-prolinol-doped sol–gel-processed materials. Chem Mater 4: 851–855Google Scholar
  240. 240.
    240 Nosaka Y, Tohriiwa N, Kobayashi T, Fujii N (1993) Two-dimensionally poled sol–gel processing of titania film doped with organic compounds for nonlinear optical activity. Chem Mater 5: 930–932Google Scholar
  241. 241.
    241 Lebeau B, Sanchez C, Brasselet S, Zyss J, Froc G, Du M (1996) Large second-order nonlinearities in azo dyes grafted hybrid sol–gel coat. New J Chem 20: 13–18Google Scholar
  242. 242.
    242 Jiang H, Kakkar AK (1998) From simple acid-base hydrolytic chemistry to soluble high Tg inorganic–organic hybrid materials with large and stable second-order nonlinear optical susceptibilities. Adv Mater 10: 1093–1097Google Scholar
  243. 243.
    243 Innocenzi P, Miorin E, Brusatin G, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F, Pizzoferrato R (2002) Incorporation of zwitterionic push-pull chromophores into hybrid organic–inorganic matrixes. Chem Mater 14: 3758–3766Google Scholar
  244. 244.
    244 Innocenzi P, Brusatin G, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F, Pizzoferrato R (2003) Entrapping of push-pull zwitterionic chromophores in hybrid matrices for photonic applications. J Sol–Gel Sci Technol 26: 967–970Google Scholar
  245. 245.
    245 Izawa K, Okamoto N, Sugihara O (1993) Stable and large second harmonic generation in sol–gel-processed poled silica waveguides doped with organic azo dye. Jpn J Appl Phys 32: 807–811Google Scholar
  246. 246.
    246 Innocenzia P, Lebeau B (2005) Organic–inorganic hybrid materials for non-linear optics. J Mater Chem 15: 3821–3831Google Scholar
  247. 247.
    247 Lee K-S, Kim T-D, Min YH, Yoon CS (2001) NLO activities of novel sol–gel processed systems with three different bonding direction. Synth Met 117: 311–313Google Scholar
  248. 248.
    248 Rosso V, Loicq J, Renotte Y, Lion Y (2004) Optical non-linearity in Disperse Red 1 dye-doped sol–gel. J Non-Cryst Solids 342: 140–145Google Scholar
  249. 249.
    249 Zhang X, Cao Z, Yang K, Long G (1998) Preparation and third-order non-linear optical property of rhodamine-6G-doped SiO2-TiO2 sol–gel thin films. Proc SPIE 3175: 302–305Google Scholar
  250. 250.
    250 Gall GJ, King TA, Oliver SN, Capozzi CA, Seddon AB, Hill CAS, Underhill AE (1994) Third-order nonlinear optical properties of metal dithiolene- and phthalocyanine-doped sol–gel materials. Proc SPIE 2288: 372–381Google Scholar
  251. 251.
    251 Han W-T (1999) Synthesis and linear and non-linear optical properties of (0.8PPV + 0.2DMPPV)/silica glass composites by sol–gel process. J Non-Cryst Solids 259: 107–115Google Scholar
  252. 252.
    252 Watanabe T, Zhou HS, Honma I, Asai K, Ishigure K (2000) Synthesis and nonlinear optical susceptibility of cyanine dye J-aggregate doped silica film (I). J Sol–Gel Sci Technol 19: 257–261Google Scholar
  253. 253.
    253 Zhou HS, Watanabe T, Mito A, Asai K, Ishigure K, Honma I (2000) Synthesis and nonlinear optical susceptibility of cyanine dye J-aggregates doped silica film (II). J Sol–Gel Sci Technol 19: 803–806Google Scholar
  254. 254.
    254 Nakamura M, Nasu H, Kamiya K (1991) Preparation of organic dye-doped SiO2 gels by the sol–gel process and evaluation of their optical non-linearity. J Non-Cryst Solids 135: 1–7Google Scholar
  255. 255.
    255 Yuwono AH, Xue J, Wang J, Elim HI, Ji W, LiY, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13: 1475–1479Google Scholar
  256. 256.
    256 Yuwono AH, Liu B, Xue J, Wan J, Elim HI, JiW, Li Y, White TJ (2004) Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids. J Mater Chem 14: 2978–2987Google Scholar
  257. 257.
    257 Wang SX, Zhang LD, Su H, Zhang ZP, Li GH, Meng GW, Zhang J, Wang YW, Fan JC, Gao T (2001) Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO2 nanocomposites. Phys Lett A 281: 59–63Google Scholar
  258. 258.
    258 Wu X, Wang R, Zou B, Wu P, Wang L, Xu J, Huang W (1997) The effects of different interfacial environments on the optical nonlinearity of nanometer-sized CdO organosol. Appl Phys Lett 71: 2097–2099Google Scholar
  259. 259.
    259 Li C-Y, Kao Y-H, Hayashi K, Takada T, Mackenzie JD, Kang KI, Lee S-G, Peyghambarian N, Yamane M, Zhang G-W, Najafi SI (1994) Improving CdS quantum-dot materials by the sol–gel method. Proc SPIE 2288: 151–162Google Scholar
  260. 260.
    260 Takada T, Yano T, Yasumori A, Yamane M, Mackenzie JD (1992) Preparation of quantum-size CdS-doped Na2OB2O3SiO2 glasses with high non-linearity. J Non-Cryst Solids 147: 631–635Google Scholar
  261. 261.
    261 Martucci A, Innocenzi P, Fick J, Mackenzie JD (1999) Zirconia-ormosil films doped with PbS quantum dots. J. Non-Cryst Solids 244: 55–62Google Scholar
  262. 262.
    262 Corriu RJP, Mehdi A, Reye C, Thieuleux C, Frenkel A, Gibaud A (2004) Preparation of ordered SBA-15 mesoporous silica containing chelating groups. Study of the complexation of EuIII inside the pore channels of the materials. New J Chem 28: 156–160Google Scholar
  263. 263.
    263 de Zea Bermudez V, Carlos LD, Alcácer L (1999) Sol–gel derived urea cross-linked organically silicates. 1. Room temperature mid-infrared spectra. Chem Mater 11: 569–580Google Scholar
  264. 264.
    264 Dunn B, Zink JI (1991) Optical properties of sol–gel glasses doped with organic molecules. J Mater Chem 1: 903–914Google Scholar
  265. 265.
    265 Klein LL, Sanchez C (1995) Hybrid organic–inorganic materials. J Sol–Gel Sci Tech 5: 75–76Google Scholar
  266. 266.
    266 Vogel R, Meredith P, Kartini I, Harvey M, Riches JD, Bishop A, Heckenberg N, Trau M, Rubinsztein-Dunlop H (2003) Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. ChemPhysChem 4: 595–603Google Scholar
  267. 267.
    267 Xu J, Aubonnet S, Barry HF, MacCraith BD (2003) Preparation and characterization of erbium-doped ormosil planar waveguides. Mater Lett 57: 4276–4281Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Física and CICECOUniversidade de AveiroAveiroPortugal

Personalised recommendations