Graph Domination, Coloring and Cliques in Telecommunications

  • Balabhaskar Balasundaram
  • Sergiy Butenko


This chapter aims to provide a detailed survey of existing graph models and algorithms for important problems that arise in different areas of wireless telecommunication. In particular, applications of graph optimization problems such as minimum dominating set, minimum vertex coloring and maximum clique in multihop wireless networks are discussed. Different forms of graph domination have been used extensively to model clustering in wireless ad hoc networks. Graph coloring problems and their variants have been used to model channel assignment and scheduling type problems in wireless networks. Cliques are used to derive bounds on chromatic number, and are used in models of traffic flow, resource allocation, interference, etc. In this chapter we survey the solution methods proposed in the literature for these problems and some recent theoretical results that are relevant to this area of research in wireless networks.


Dominating sets independent sets cliques coloring wireless networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large graphs. In J. Abello and J. Vitter, editors, External Memory Algorithms, volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages 119–130. American Mathematical Society, 1999.Google Scholar
  2. J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection. Lecture Notes in Computer Science, 2286:598–612, 2002.CrossRefMathSciNetGoogle Scholar
  3. G. Agnarsson and M. M. Halldórsson. Coloring powers of planar graphs. SIAM Journal on Discrete Mathematics, 16(4):651–662, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  4. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  5. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Distributed heuristics for connected dominating sets in wireless ad hoc networks. Journal of Communications and Networks, 4:22–29, 2002a.Google Scholar
  6. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected dominating sets in mobile ad hoc networks. In Proceedings of the Third ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 157–164, 2002b.Google Scholar
  7. K. M. Alzoubi, P.-J. Wan, and O. Frieder. A simple parallel algorithm for the maximal independent set problem. International Journal of Foundations of Computer Science, 14(2):287–303, 2003a.zbMATHCrossRefMathSciNetGoogle Scholar
  8. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Weakly-connected dominating sets and sparse spanners in wireless ad hoc networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems, page 96. IEEE Computer Society, 2003b.Google Scholar
  9. A. Amis, R. Prakash, T. Vuong, and D. Huynh. Max-min d-cluster formation in wireless ad hoc networks. In Proceedings of IEEE INFOCOM, 2000.Google Scholar
  10. B. An and S. Papavassiliou. A mobility-based clustering approach to support mobility management and multicast routing in mobile ad-hoc wireless networks. Intl. J. Network Management, 11(6):387–395, 2001.CrossRefGoogle Scholar
  11. K. Appel and W. Haken. Every planar map is four colourable. part I: Discharging. Illinois Journal of Mathematics, 21:429–490, 1977.zbMATHMathSciNetGoogle Scholar
  12. K. Appel, W. Haken, and J. Koch. Every planar map is four colourable. part II: Reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.zbMATHMathSciNetGoogle Scholar
  13. E. Arikan. Some complexity results about packet radio networks. IEEE Transactions on Information Theory, IT-30:910–918, 1984.MathSciNetGoogle Scholar
  14. D. J. Baker and A. Ephremides. The architectural organization of a mobile radio network via a distributed algorithm. IEEE Trans. on Communications, COM-29(11): 1694–1701, November 1981.CrossRefGoogle Scholar
  15. B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10:23–39, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  16. S. Bannerjee and S. Khuller. A clustering scheme for hierarchical control in wireless networks. In Proceedings of IEEE INFOCOM, pages 1–12, 2001.Google Scholar
  17. S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the 1999 International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’ 99), page 310, 1999.Google Scholar
  18. S. Basagni. Finding a maximal weighted independent set in wireless networks. Telecommunication Systems, 18(1–3): 155–168, 2001.zbMATHCrossRefGoogle Scholar
  19. S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, editors. Mobile Ad Hoc Networking. Wiley-IEEE Press, 2004.Google Scholar
  20. R. Battiti, A. A. Bertossi, and M. A. Bonuccelli. Assigning codes in wireless networks: bounds and scaling properties. Wireless Networks, 5:195–209, 1999.CrossRefGoogle Scholar
  21. R. Battiti and M. Protasi. Reactive local search for the maximum clique problem. Algorithmica, 29:610–637, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  22. A. A. Bertossi and M. A. Bonuccelli. Code assignment for hidden terminal interference avoidance in multihop packet radio networks. IEEE/ACM Trans. Netw., 3(4): 441–449, 1995.CrossRefGoogle Scholar
  23. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages 1–74. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.Google Scholar
  24. M. A. Bonuccelli and S. Leonardi. On scheduling variable length broadcasts in wireless networks. Telecommunication Systems, 8:211–227, 1997.CrossRefGoogle Scholar
  25. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251–256, 1979.zbMATHCrossRefGoogle Scholar
  26. H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Technical Report 93-27, Department of Computer Science, University of British Columbia, 1993.Google Scholar
  27. R. L. Brooks. On coloring the nodes of a network. Proc. Cambridge Philos. Soc., 37: 194–197, 1941.CrossRefMathSciNetGoogle Scholar
  28. S. Butenko, X. Cheng, D.-Z. Du, and P. Pardalos. On the construction of virtual backbone for ad hoc wireless networks. In S. Butenko, R. Murphey, and P.M Pardalos, editors, Cooperative Control: Models, Applications and Algorithms, pages 43–54. Kluwer Academic Publisher, 2003.Google Scholar
  29. S. Butenko, X. Cheng, C.A.S Oliveira, and P.M. Pardalos. A new heuristic for the minimum connected dominating set problem on ad hoc wireless networks. In R. Murphey and P.M Pardalos, editors, Cooperative Control and Optimization, pages 61–73. Kluwer Academic Publisher, 2004a.Google Scholar
  30. S. Butenko, C. W. Commander, and P. M. Pardalos. A greedy randomized adaptive search procedure for the broadcast scheduling problem. Submitted to Journal of Combinatorial Optimization, 2004b.Google Scholar
  31. M. Cardei, X. Cheng, X. Cheng, and D. Z. Du. Connected domination in multihop ad hoc wireless networks. In H. J. Caulfield, S. H. Chen, H. D. Cheng, R. J. Duro, V. Honavar, E. E. Kerre, M. Lu, M. G. Romay, T. K. Shih, D. V., P. P. Wang, and Y. Yang, editors, Proceedings of the 6th Joint Conference on Information Science, pages 251–255. JCIS / Association for Intelligent Machinery, Inc., 2002.Google Scholar
  32. Y. Caro, D. B. West, and R. Yuster. Connected domination and spanning trees with many leaves. SIAM J. Discret. Math., 13(2):202–211, 2000.CrossRefMathSciNetGoogle Scholar
  33. G. J. Chang and G. L. Nemhauser. The k-domination and k-stability problems on sunfree chordal graphs. SIAM Journal on Algebraic and Discrete Methods, 5:332–345, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  34. M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm for mobile ad hoc networks. Journal of Cluster Computing, 5:193–204, 2002.CrossRefGoogle Scholar
  35. Y. P. Chen and A. L. Liestman. Approximating minimum size weakly connected dominating sets for clustering mobile ad hoc networks. In Proceedings of the Third ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 165–172, 2002.Google Scholar
  36. Y. P. Chen and A. L. Liestman. A zonal algorithm for clustering ad hoc networks. International Journal of Foundations of Computer Science, 14(2):305–322, 2003.zbMATHCrossRefGoogle Scholar
  37. Y. P. Chen, A. L. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks. In Y. Pan and Y. Xiao, editors, Ad Hoc and Sensor Networks, volume 2 of Wireless Networks and Mobile Computing, chapter 7. Nova Science Publishers, 2005.Google Scholar
  38. X. Cheng, X. Huang, and D.-Z. Du, editors. Ad Hoc Wireless Networking. Kluwer Academic Publisher, The Netherlands, 2003a.Google Scholar
  39. X. Cheng, X. Huang, D. Li, W. Wu, and D. Z. Du. A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks, 42(4):202–208, 2003b.zbMATHCrossRefMathSciNetGoogle Scholar
  40. I. Chlamtac, M. Conti, and J. J.-N. Liu. Mobile ad hoc networking: imperatives and challenges. Ad Hoc Networks, 1:13–64, 2003.CrossRefGoogle Scholar
  41. I. Chlamtac and S. Kutten. On broadcasting in radio networks-problem analysis and protocol design. IEEE Transactions on Communications, 33(12): 1240–1246, 1985a.zbMATHCrossRefGoogle Scholar
  42. I. Chlamtac and S. Kutten. A spatial reuse TDMA/FDMA for mobile multi-hop radio networks. In Proceedings of the IEEE INFOCOM, 1985b.Google Scholar
  43. I. Chlamtac and A. Lerner. A link allocation protocol for mobile multihop networks. In Proceedings of the IEEE Globecom, 1985.Google Scholar
  44. I. Chlamtac and S. S. Pinter. Distributed nodes organization algorithm for channel access in a multihop dynamic radio network. IEEE Transactions on Computers, 36(6):728–737, 1987.CrossRefGoogle Scholar
  45. I. Cidon and M. Sidi. Distributed assignment algorithms for multihop packet radio networks. IEEE Trans. Comput., 38(10): 1353–1361, 1989.CrossRefGoogle Scholar
  46. B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Mathematics, 86: 165–177, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  47. E. J. Cockayne, B. Gamble, and B. Shepherd. An upper bound for the k-domination number of a graph. Journal of Graph Theory, 9(4):533–534, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  48. C. W. Commander, S. Butenko, and P. M. Pardalos. On the performance of heuristics for broadcast scheduling. In D. Grundel, R. Murphey, and P. Pardalos, editors, Theory and Algorithms for Cooperative Systems, pages 63–82. World Scientific, 2004.Google Scholar
  49. M. B. Cozzens and F. S. Roberts. T-colorings of graphs and the channel assignment problem. Congressus Numerantium, 35:191–208, 1982.MathSciNetGoogle Scholar
  50. B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected dominating sets. In IEEE International Conference on Communications (ICC’ 97), pages 376–380, 1997.Google Scholar
  51. B. Das, R. Sivakumar, and V. Bharghavan. Routing in ad-hoc networks using a virtual backbone. In Proceedings of the International Conference on Computers and Communication Networks (IC3N), pages 1–20, 1997.Google Scholar
  52. J.S. Deogun, D. Kratsch, and G. Steiner. An approximation algorithm for clustering graphs with dominating diametral path. Information Processing Letters, 61:121–127, 1997.CrossRefMathSciNetGoogle Scholar
  53. DIMACS. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge., 1995. Accessed November 2004.
  54. D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 717–724, 2003.Google Scholar
  55. P. Duchet and H. Meyniel. On Hadwiger’s number and stability numbers. Annals of Discrete Mathematics, 13:71–74, 1982.zbMATHMathSciNetGoogle Scholar
  56. W. Duckworth and B. Mans. Randomized algorithms for finding small weakly-connected dominating sets of regular graphs. In R. Petreschi, G. Persiano, and R. Silvestri, editors, Proceedings of the Fifth Conference on Algorithms and Complexity, pages 83–95, 2003.Google Scholar
  57. J. E. Dunbar, J.W. Grossman, J. H. Hattingh, S. T. Hedetniemi, and A. A. McRae. On weakly connected domination in graphs. Discrete Mathematics, 167–168:261–269, 1997.CrossRefMathSciNetGoogle Scholar
  58. A. Ephremides and T. V. Truong. Scheduling broadcasts in multihop radio networks. IEEE Transactions on Communications, 38:456–461, 1990.CrossRefGoogle Scholar
  59. S. Even, O. Goldreich, S. Moran, and P. Tong. On the NP-completeness of certain network testing problems. Networks, 14:1–24, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  60. Z. Fang and B. Bensaou. Fair bandwidth sharing algorithms based on game theory frameworks for wireless ad-hoc networks. In Proceedings of the IEEE Infocom, 2004.Google Scholar
  61. T. A. Feo and M. G. C. Resende. A greedy randomized adaptive search procedure for maximum independent set. Operations Research, 42:860–878, 1994.zbMATHCrossRefGoogle Scholar
  62. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  63. Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks. In Proceedings of the Second ACM International Workshop on Principles of Mobile Computing, pages 31–37, 2002.Google Scholar
  64. P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In P. Hansen and C.C. Ribeiro, editors, Essays and Surveys on Metaheuristics, pages 325–367. Kluwer Academic Publishers, 2001.Google Scholar
  65. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York, 1979.zbMATHGoogle Scholar
  66. M. Gerla and J. T. C. Tsai. Multicluster, mobile, multimedia radio network. Wireless Networks, 1(3):255–265, 1995.CrossRefGoogle Scholar
  67. F. Glover. Tabu search-part I. ORSA J. Comput., 1:190–260, 1989.zbMATHMathSciNetGoogle Scholar
  68. F. Glover. Tabu search-part II. ORSA J. Comput., 2:4–32, 1990.zbMATHGoogle Scholar
  69. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.zbMATHGoogle Scholar
  70. M. Goldberg and T. Spencer. A new parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 18(2):419–427, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  71. A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica, 20(3):277–293, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  72. S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorithmica, 20:374–387, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  73. R. Gupta and J. Walrand. Approximating maximal cliques in ad-hoc networks. In Proceedings of the PIMRC 2004, September 2004.Google Scholar
  74. B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE Transactions on Information Theory, 34:910–917, 1988.CrossRefMathSciNetGoogle Scholar
  75. W. K. Hale. Frequency assignment: theory and applications. Proceedings of the IEEE, 68(12): 1497–1514, 1980.CrossRefGoogle Scholar
  76. J. Håstad. Clique is hard to approximate within n 1−ɛ. Acta Mathematica, 182:105–142, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  77. T. W. Haynes, S. T. Hedetniemi, and P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker Inc., 1998a.Google Scholar
  78. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors. Domination in Graphs: Advanced Topics. Marcel Dekker Inc., 1998b.Google Scholar
  79. S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Mathematics, 86(1–3):257–277, 1997.MathSciNetGoogle Scholar
  80. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79:2554–2558, 1982.CrossRefMathSciNetGoogle Scholar
  81. J. J. Hopfield and D. W. Tank. “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52:141–152, 1985.zbMATHMathSciNetGoogle Scholar
  82. E. Hossain, R. Palit, and P. Thulasiraman. Clustering in mobile wireless ad hoc networks: issues and approaches. In Wireless Communications Systems and Networks, pages 383–424. Plenum Publishing Corporation, New York, 2004.CrossRefGoogle Scholar
  83. T. C. Hou and T. J. Tsai. An access-based clustering protocol for multihop wireless ad hoc networks. IEEE Journal on Selected Areas in Commnications, 19(7):1201–1210, 2001.CrossRefGoogle Scholar
  84. I. Hoyler. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10: 718–720, 1981.CrossRefMathSciNetGoogle Scholar
  85. H. Huang, A. W. Richa, and M. Segal. Approximation algorithms for the mobile piercing set problem with applications to clustering in ad-hoc networks. Mobile Networks and Applications, 9(2):151–161, 2004.CrossRefGoogle Scholar
  86. F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. A dominating sets and target radius based localized activity scheduling and minimum energy broadcast protocol for ad hoc and sensor networks. In Proceedings of the 3rd IFIP Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), pages 351–359, 2004.Google Scholar
  87. S. Jendrol’ and Z. Skupień. Local structures in plane maps and distance colorings. Discrete Mathematics, 236(1–3): 167–177, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  88. L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for constructing small dominating sets. Distributed Computing, 15(4): 193–205, 2002.CrossRefGoogle Scholar
  89. J. Kalvenes, J. Kennington, and E. V. Olinick. Hierarchical cellular network design with channel allocation. To appear in European Journal of Operational Research, 160(1):3–18, 2005.zbMATHGoogle Scholar
  90. I. Katzela and M. Naghshineh. Channel assignment schemes for cellular mobile telecommunications: A comprehensive survey. IEEE Personal Communications, pages 10–31, 1996.Google Scholar
  91. P. Krishna, N, Vaidya, M. Chatterjee, and D. Pradhan. A cluster-based approach for routing in dynamic networks. In ACM SIGCOMM Computer Communication Review, pages 49–65, 1997.Google Scholar
  92. B. Krishnamachari, S. Wicker, R. Béjar, and C. Fernandez. On the complexity of distributed self-configuration in wireless networks. Telecommunication Systems, 22(1–4):33–59, 2003.CrossRefGoogle Scholar
  93. S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and approximation algorithms for channel assignment in radio networks. Wireless Networks, 7(6):575–584, 2001.zbMATHCrossRefGoogle Scholar
  94. F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approximation. In Proceedings of the Twenty Second Annual Symposium on Principles of Distributed Computing, pages 25–32. ACM Press, 2003.Google Scholar
  95. S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets and applications. J. Algorithms, 28(1):40–66, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  96. M. Laguna and R. Martí. A GRASP for coloring sparse graphs. Computational Optimization and Applications, 19(2): 165–178, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  97. C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal of Selected Areas in Communications, 15(7): 1265–1275, 1991.CrossRefGoogle Scholar
  98. E. L. Lloyd and S. Ramanathan. On the complexity of distance-2 coloring. In W. W. Koczkodaj, P. E. Lauer, and A. A. Toptsis, editors, Computing and Information-ICCI’92, Fourth International Conference on Computing and Information, Toronto, Ontario, Canada, May 28–30, 1992, Proceedings, pages 71–74. IEEE Computer Society, 1992.Google Scholar
  99. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15(4): 1036–1055, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  100. C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960–981, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  101. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  102. S. T. McCormick. Optimal approximation of sparse hessians and its equivalence to a graph coloring problem. Mathematical Programming, 26:153–171, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  103. T. Minn and K.-Y. Siu. Dynamic assignment of orthogonal variable spreading factor codes in W-CDMA. IEEE Journal on Selected Areas in Communications, 18(8): 1429–1440, 2000.CrossRefGoogle Scholar
  104. R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161–173, 1979.CrossRefGoogle Scholar
  105. R. Montemanni, D. H. Smith, and S. M. Allen. Lower bounds for fixed spectrum frequency assignment. Annals of Operations Research, 107:237–250, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  106. T. Moscibroda and R. Wattenhofer. Efficient computation of maximal independent sets in unstructured multi-hop radio networks. In Proceedings of the First International Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2004.Google Scholar
  107. R. A. Murphey, P. M. Pardalos, and M. G. C. Resende. Frequency assignment problems. In D.-Z Du and P.M. Pardalos, editors, Handbook of Combinatorial Optimization. Kluwer Academic Publishers, 1999.Google Scholar
  108. F. Nocetti, J. Gonzalez, and I. Stojmenovic. Connectivity-based k-hop clustering in wireless networks. Telecommunication Systems, 22(1–4):205–220, 2003.CrossRefGoogle Scholar
  109. R. Ogier. A decomposition method for optimal link scheduling. In Proceedings of the 24th Allerton Conference, pages 822–823, 1986.Google Scholar
  110. S. Parthasarathy and R. Gandhi. Fast distributed well connected dominating sets for ad hoc networks. Technical Report CS-TR-4559, University of Maryland, Computer Science Department, 2004.Google Scholar
  111. L. D. Penso and V. C. Barbosa. A distributed algorithm to find k-dominating sets. Discrete Applied Mathematics, 141:243–253, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  112. C. E. Perkins, editor. Ad Hoc Networking. Addison-Wesley, 2001.Google Scholar
  113. A. Puri. Optimizing traffic flow in fixed wireless networks. In Proceedings of the Wireless Communications and Networking Conference, WCNC 2002, volume 2, pages 904–907, 2002.CrossRefGoogle Scholar
  114. S. Ramanathan. Scheduling algorithms for multihop radio networks. IEEE/ACM Transactions on Networking, 1(2): 166–172, 1993.CrossRefMathSciNetGoogle Scholar
  115. S. Ramanathan. A unified framework and algorithm for channel assignment in wireless networks. Wireless Networks, 5(2):81–94, 1999.CrossRefGoogle Scholar
  116. R. Ramaswami and K. K. Parhi. Distributed scheduling of broadcasts in a radio network. In Proceedings of the INFOCOM, 1989.Google Scholar
  117. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers, 2003.Google Scholar
  118. M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as Real Problem Solvers. Kluwer Academic Publishers, 2005.Google Scholar
  119. N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-color theorem. Journal of Combinatorial Theory, 70(1):2–44, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  120. S. Salcedo-Sanz, C. Buso no Calzón, and A. R. Figueiral-Vidal. Mixed neural-genetic algorithm for the broadcast scheduling problem. IEEE Transactions on Wireless Communications, 2(2):277–283, 2003.CrossRefGoogle Scholar
  121. A. Saxena. Polyhedral studies in domination graph theory (I)., 2003. Accessed November 2004.
  122. A. Sen and M. L. Huson. A new model for scheduling packet radio networks. Wireless Networks, 3:71–82, 1997.CrossRefGoogle Scholar
  123. R. Sivakumar, B. Das, and V. Bharghavan. Spine routing in ad hoc networks. Cluster Computing, 1(2):237–248, 1998.CrossRefGoogle Scholar
  124. S. Sivavakeesar and G. Pavlou. A prediction-based clustering algorithm to achieve quality of service in mulithop ad hoc networks. In Proceedings of the London Communications Symposium (LCS), London, UK, pages 17–20, 2002.Google Scholar
  125. I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Computing. Wiley InterScience, 2002.Google Scholar
  126. I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 13(1): 14–25, 2002.CrossRefGoogle Scholar
  127. L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12): 1936–1948, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  128. J. A. Telle. Complexity of domination-type problems in graphs. Nordic J. of Computing, 1(1): 157–171, 1994.MathSciNetGoogle Scholar
  129. J. van den Heuvel and S. McGuinness. Coloring the square of a planar graph. Journal of Graph Theory, 42(2):110–124, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  130. T. H. P. Vuong and D. T. Huynh. Adapting broadcasting sets to topology changes in packet radio networks. In Proceedings of the Eight International Conference on Computer Communications and Networks, pages 263–268, 1999.Google Scholar
  131. P.-J. Wan. Lecture notes on wireless networking: OVSF-CDMA code assignment in wireless ad hoc networks., 2004. Accessed October 2004.
  132. P.-J. Wan, K. M. Alzoubi, and O. Frieder. A simple heuristic for minimum connected dominating set in graphs. International Journal of Foundations of Computer Science, 14(2):323–333, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  133. P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of connected dominating set in wireless ad hoc networks. Mobile Networks and Applications, 9(2): 141–149, 2004.CrossRefGoogle Scholar
  134. G. Wang and N. Ansari. Optimal broadcast scheduling in packet radio networks using mean field annealing. IEEE Journal on Sleceted Areas in Communications, 15(2): 250–260, 1997.CrossRefGoogle Scholar
  135. Y. Watanabe, N. Mizuguchi, and Y. Fujii. Solving optimization problems by using a hopfield neural network and genetic algorithm combination. Syst. Comput. Japan, 29(10):68–73, 1998.CrossRefGoogle Scholar
  136. J. Wu. Extended dominating-set-based routing in ad hoc wireless networks with unidirectional links. IEEE Transactions on Parallel and Distributed Computing, 22(1–4):327–340, 2002.Google Scholar
  137. J. Wu and H. Li. A dominating-set-based routing scheme in ad hoc wireless networks. Telecommunication Systems, 18(1–3): 13–36, 2001.zbMATHCrossRefGoogle Scholar
  138. J. Wu, B. Wu, and I. Stojmenovic. Power-aware broadcasting and activity scheduling in ad hoc wireless networks using connected dominating sets. Wireless Communications and Mobile Computing, 4(1):425–438, 2003.CrossRefGoogle Scholar
  139. Y. Xue, B. Li, and K. Nahrstedt. Price-based resource allocation in wireless ad-hoc networks. In Proc. IWQoS 2003, 2003.Google Scholar
  140. J. Yeo, H. Lee, and S. Kim. An efficient broadcast scheduling algorithm for TDMA ad hoc networks. Computers and Operations Research, 29:1793–1806, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Balabhaskar Balasundaram
    • 1
  • Sergiy Butenko
    • 1
  1. 1.Department of Industrial EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations